Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of lysine

H02CC(H)(NH2)(CH2)3C(H)(NH2)C02H. M.p. at least 305"C. The o, l and meso forms are all isolated from hydrolysates of bacterial proteins. It is an intermediate in the biosynthesis of lysine in many bacteria. [Pg.131]

A likely exit path for the xenon was identified as follows. Different members of our research group placed the exit path in the same location and were able to control extraction of the xenon atom with the tug feature of the steered dynamics system without causing exaggerated perturbations of the structure. The exit path is located between the side chains of leucines 84 and 118 and of valine 87 the flexible side chain of lysine 83 lies just outside the exit and part of the time is an obstacle to a linear extraction (Fig. 1). [Pg.142]

Trypsin (Section 27 10) A digestive enzyme that catalyzes the hydrolysis of proteins Trypsin selectively catalyzes the cleavage of the peptide bond between the carboxyl group of lysine or arginine and some other amino acid... [Pg.1296]

Many pharmaceutical compounds are weak acids or bases that can be analyzed by an aqueous or nonaqueous acid-base titration examples include salicylic acid, phenobarbital, caffeine, and sulfanilamide. Amino acids and proteins can be analyzed in glacial acetic acid, using HCIO4 as the titrant. For example, a procedure for determining the amount of nutritionally available protein has been developed that is based on an acid-base titration of lysine residues. ... [Pg.303]

Urea is also used as feed supplement for mminants, where it assists in the utilization of protein. Urea is one of the raw materials for urea—formaldehyde resins. Urea (with ammonia) pyrolyzes at high temperature and pressure to form melamine plastics (see also Cyanamides). Urea is used in the preparation of lysine, an amino acid widely used in poultry feed (see Amino acids Feeds and feed additives, petfoods). It also is used in some pesticides. [Pg.310]

Table 11 presents data on the protein quaUty of a variety of LPC products obtained from rat-feeding studies. Typical protein efficiency ratio (PER) values for LPCs derived from alfalfa range from 1.41 without supplementation to 2.57 with 0.4% methionine added casein can be adjusted to a PER of 2.50 (98,100). Biological values (BV) of mixtures of LPCs, such as barley and rye grass or soybean and alfalfa, maybe higher than either LPC alone. The effect has been attributed to the enhanced biological availabihty of lysine in these mixtures (99). [Pg.469]

Raw defatted cottonseed flours contain 1.2—2.0% gossypol [303-45-7] (7) (19). When cottonseed is treated with moist heat, the S-amino group of lysine and gossypol forms a derivative that is biologically unavailable thereby inactivating gossypol but further lowering the effective content of lysine. [Pg.301]

Pea.nuts, The proteins of peanuts are low in lysine, threonine, cystine plus methionine, and tryptophan when compared to the amino acid requirements for children but meet the requirements for adults (see Table 3). Peanut flour can be used to increase the nutritive value of cereals such as cornmeal but further improvement is noted by the addition of lysine (71). The trypsin inhibitor content of raw peanuts is about one-fifth that of raw soybeans, but this concentration is sufficient to cause hypertrophy (enlargement) of the pancreas in rats. The inhibitors of peanuts are largely inactivated by moist heat treatment (48). As for cottonseed, peanuts are prone to contamination by aflatoxin. FDA regulations limit aflatoxin levels of peanuts and meals to 100 ppb for breeding beef catde, breeding swine, or poultry 200 ppb for finishing swine 300 ppb for finishing beef catde 20 ppb for immature animals and dairy animals and 20 ppb for humans. [Pg.301]

Sundower Seed. Compared to the FAO/WHO/UNU recommendations for essential amino acids, sunflower proteins are low in lysine, leucine, and threonine for 2 to 5-year-olds but meet all the requirements for adults (see Table 3). There are no principal antinutritional factors known to exist in raw sunflower seed (35). However, moist heat treatment increases the growth rate of rats, thereby suggesting the presence of heat-sensitive material responsible for growth inhibitions in raw meal (72). Oxidation of chlorogenic acid may involve reaction with the S-amino group of lysine, thus further reducing the amount of available lysine. [Pg.301]

The side groups of the amino acids vary markedly in size and chemical nature and play an important role in the chemical reactions of the fiber. For example, the basic groups (hisidine, arginine, and lysine) can attract acid (anionic) dyes, and in addition the side chains of lysine and hisidine are important sites for the attachment of reactive dyes. The sulfur-containing amino acid cysteine plays a very important role, because almost all of the cysteine residues in the fiber are linked in pairs to form cystine residues, which provide a disulfide bridge —S—S— between different polypeptide molecules or between segments of the same molecules as shown ... [Pg.343]

FIGURE 4.17 A plot of chemical shifts versus pH for the carbons of lysine. Changes in chemical shift are most pronounced for atoms near the titrating groups. Note the correspondence between the p. values and the particular chemical shift changes. All chemical shifts are defined relative to tetramethylsilane (TMS). (From Suprcnant, H., ct at., 1980. [Pg.101]

Calculate the pH at which the e-amino group of lysine is 20% dissociated. [Pg.106]

Histone Ratio of Lysine to Arginine M, Copies per Nucleosome... [Pg.379]

Definitive identification of lysine as the modified active-site residue has come from radioisotope-labeling studies. NaBH4 reduction of the aldolase Schiff base intermediate formed from C-labeled dihydroxyacetone-P yields an enzyme covalently labeled with C. Acid hydrolysis of the inactivated enzyme liberates a novel C-labeled amino acid, N -dihydroxypropyl-L-lysine. This is the product anticipated from reduction of the Schiff base formed between a lysine residue and the C-labeled dihydroxy-acetone-P. (The phosphate group is lost during acid hydrolysis of the inactivated enzyme.) The use of C labeling in a case such as this facilitates the separation and identification of the telltale amino acid. [Pg.622]

Caprolactam, a white solid that melts at 69°C, can be obtained either in a fused or flaked form. It is soluble in water, ligroin, and chlorinated hydrocarbons. Caprolactam s main use is to produce nylon 6. Other minor uses are as a crosslinking agent for polyurethanes, in the plasticizer industry, and in the synthesis of lysine. [Pg.286]

The first step in the biological degradation of lysine is reductive animation with a-ketoglutarate to give saccharopine. Nicotinamide adenine dinucleotide phosphate (NADPH), a relative of NADH, is the reducing agent. Show the mechanism. [Pg.1059]

One of the commercial methods for production of lysine consists of a two-stage process using two species of bacteria. The carbon sources for production of amino acids are corn, potato starch, molasses, and whey. If starch is used, it must be hydrolysed to glucose to achieve higher yield. Escherichia coli is grown in a medium consisting of glycerol, corn-steep liquor and di-ammonium phosphate under aerobic conditions, with temperature and pH controlled. [Pg.8]

In terms of amino acids bacterial protein is similar to fish protein. The yeast s protein is almost identical to soya protein fungal protein is lower than yeast protein. In addition, SCP is deficient in amino acids with a sulphur bridge, such as cystine, cysteine and methionine. SCP as a food may require supplements of cysteine and methionine whereas they have high levels of lysine vitamins and other amino acids. The vitamins of microorganisms are primarily of the B type. Vitamin B12 occurs mostly hi bacteria, whereas algae are usually rich in vitamin A. The most common vitamins in SCP are thiamine, riboflavin, niacin, pyridoxine, pantothenic acid, choline, folic acid, inositol, biotin, B12 and P-aminobenzoic acid. Table 14.4 shows the essential amino acid analysis of SCP compared with several sources of protein. [Pg.339]

Histones are small, basic proteins required to condense DNA into chromatin. They have been first described and named in 1884 by Albrecht Kossel. There are five main histones HI, H2A, H2B, H3 andH4. An octamer of core histones H2A, H2B, H3 andH4 is located inside a nucleosome, the central building block of chromatin, with about 150 base pairs of DNA wrapped around. The basic nature of histones, mediated by the high content of lysine and arginine residues, allows a direct interaction with the acidic phosphate back bone of DNA. The fifth histone HI is located outside at the junction between nucleosomes and is referred to as the linker histone. Besides the main histones, so-called histone variants are known, which replace core histones in certain locations like centromers. [Pg.591]

Histone acetylation is a reversible and covalent modification of histone proteins introduced at the e-amino groups of lysine residues. Histones and DNA form a complex - chromatin - which condenses DNA and controls gene activity. Current models interpret histone acetylation as a means to regulate chromatin activity. [Pg.592]

Histone Acetylation. Figure 1 Histone acetylation is a posttranslational modification of lysine residues of histones. This modification is catalyzed by histone actyl transferases (HATs), which transfer an acetyl group (yellow) from acetyl-Coenzyme A onto the E-amino group of the lysine residue. Histone deacetylation is catalyzed by histone deacetylases (HDACs), which hydrolyze the lysine bound acetyl group. HDAC inhibitors like Trichostatin A (TSA) are known to inhibit the deacetylation reaction in vivo and in vitro. [Pg.593]

The exact role of individual histone acetylations will have to be determined in the context of other modifications and the number of lysine residues effected. However, the general importance of histone acetylation as a regulator for chromatin activity is undisputed. This leads to the intriguing possibility to develop drugs that target histone acetylation for therapeutic purposes. The primary targets for drug development are the histone acetyl transferases (HATs) and the histone deacetylases (HDACs) which introduce and remove histone acetylations [2, 3]. [Pg.594]

Histone methylation is a common posttranslational modification fond in histones. Histone methylations have been identified on lysine and arginine residues. In case of lysines S-adenosyl-methionine (SAM) dependent methyl transferases catalyze the transfer of one, two or three methyl groups. Lysine methylation is reversible and lysine specific demethylases have been... [Pg.595]


See other pages where Of lysine is mentioned: [Pg.1115]    [Pg.1118]    [Pg.352]    [Pg.476]    [Pg.385]    [Pg.21]    [Pg.162]    [Pg.179]    [Pg.286]    [Pg.291]    [Pg.381]    [Pg.495]    [Pg.1115]    [Pg.1118]    [Pg.91]    [Pg.100]    [Pg.160]    [Pg.176]    [Pg.279]    [Pg.608]    [Pg.622]    [Pg.1021]    [Pg.423]    [Pg.541]    [Pg.592]    [Pg.594]    [Pg.635]   
See also in sourсe #XX -- [ Pg.100 , Pg.118 ]




SEARCH



Acetylation of lysine

Acylation of lysine

Biosynthesis and Production of L-Lysine

Carbamylation of lysine

Disorders of L-Lysine Metabolism

Enzyme Mechanism and Catalysis of Histone Lysine Methylation

Glycosylation of lysine

Hydroxylation of lysine residues

Kinetics of lysine

Look up the names of both individual drugs and their drug groups to access full information Lysine acetylsalicylate

Lysine Acetylation of Histones

Metabolism of valine, leucine, isoleucine, and lysine

Of poly-L-lysine

Properties of Lysine ,3-Aminomutase

Pseudo-Allosteric Effect of Poly(L-lysine) Heme Complex

Reversible modification of lysine

The Catabolism of Lysine

The e-Amino Group of Lysine

© 2024 chempedia.info