Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of hydroquinone

On adding i drop of bromine water to catechol, a deep red coloration is produced immediately. On gradually adding bromine water to a solution of hydroquinone, a deep red coloration is produced, followed by the separation of deep green crystals which then dissolve giving a yellow solution, i- and 2-Naphthol will decolorise hromine water, but usually no precipitate of the bromo compound can be obtained. [Pg.339]

To a cold aqueous solution of benzoquinone, add 1 drop of sulphurous acid solution (SOj-water) the solution turns deep green-brown owing to the intermediate formation of quinhydrone, CeH402,CeIl4(0H)2. Now add excess of sulphurous acid the solution becomes colourless owing to the formation of hydroquinone. Add a few drops of FeClj solution the reaction is reversed and the deep yellow colour (distinct from that of FeCl ) is restored. [Pg.371]

A mixture of equal parts of cottonseed oil and castor oil, containing about 1 per cent, of hydroquinone as an anti oxidant, is a useful bath liquid which can be heated up to about 250°. [Pg.78]

About 0-1 per cent, of hydroquinone should be added as a stabiliser since n-hexaldehyde exhibits a great tendency to polymerise. To obtain perfectly pure n-/iexaldehyde, treat the 21 g. of the product with a solution of 42 g. of sodium bisulphite in 125 ml. of water and shake much bisulphite derivative will separate. Steam distil the suspension of the bisulphite compound until about 50 ml. of distillate have been collected this will remove any non-aldehydic impurities together with a little aldehyde. Cool the residual aldehyde bisulphite solution to 40-50 , and add slowly a solution of 32 g. of sodium bicarbonate in 80 ml. of water, and remove the free aldehyde by steam distillation. Separate the upper layer of n-hexaldehyde, wash it with a little water, dry with anhydrous magnesium sulphate and distil the pure aldehyde passes over at 128-128-5°. [Pg.322]

I) Hydroquinone dIacetate may be prepared as follows. Add I drop of concentrated sulphuric acid to a mixture of 55 g. of hydroquinone and 103 g. (05-5 ml.) of A.R. acetic anhydride in a 500 ml. conical flask. Stir the mixture gently by hand it warms up rapidly and the hydroquinone dissolves. After 5 minutes, pour the clear solution on to 400 ml. of crushed ice. Alter with suction and wash with 500 ml. of water. Recrystallise the solid from 50 cent, ethanol by weight (ca. 400 ml. are required). The yield of pure hydroquinone diacetate, m.p. 122°, is 89 g. [Pg.677]

When a solution of, say, 1 g. of hydroquinone in 4 ml. of rectified spirit is poured into a solution of 1 g. of quinone in 30 ml. of water, qulnhydrone C,HA.C,H (0H)3, a complex of equimolecular amounts of the two components, is formed as dark green crystals having a gfistening metallic lustre, m.p. 172°. In solution, it is largely dissociated into quinone and hydroquinone. Quinhydrone is more conveniently prepared by the partial oxidation of hydroquinone with a solution of iron alum. [Pg.745]

Method 1. Cool a solution of 33 g. of hydroquinone in 150 ml. of 60 per cent, acetic acid contained in a 600 ml. beaker to below 5° in an ice bath. Dissolve 42 g. of chromic anhydride in 70 ml. of water, and add 30 ml. of glacial acetic acid. By means of a separatory funnel with bent stem and supported over the beaker, add the chromic anhydride solution... [Pg.745]

Dissolve 100 g. of iron alum (ferric ammonium sulphate) in 300 ml. of water at 65°, Pour the solution, with stirring, into a solution of 25 g. of hydroquinone in 100 ml, of water contained in a 600 ml. beaker. The quinhydrone is precipitated in fine needles. Cool the mixture in ice, filter with suction, and wash three or four times with cold water. Dry in the air between filter paper. The yield of quinhydrone, m.p, 172°, is 15 g. It contains a trace of iron, but this has no influence upon the e.m.f, of the quinhydrone electrode provided that the washing of the crude material has been thorough. The quinhydrone should be stored in a tightly-Btoppered bottle. [Pg.747]

In a 250 ml. distilling flask (1) place 122 g. (119 ml.) of p-phenylethyl alcohol and 40 g. of sodium hydroxide peUets (or 56 g. of potassium hydroxide). Heat is evolved. Warm gently until bubbles commence to form and the mixture separates into two sharply-defined layers. Distil slowly water, etc. passes over first accompamed by the gradual dis appearance of the upper phase. FinaUy the styrene passes over at 140 160° (mainly 150°) coUect this separately in a receiver containing about 0 1 g. of hydroquinone. Dry the distillate with a httle anhydrous calcium chloride or magnesium sulphate, and then distil under reduced pressure (2). C oUect the pure styrene at 42-43°/18 mm. The 3rield is 80 g. Add about 0-2 g. of hydroquinone (anti-oxidant) if it is desired to keep the phenylethylene. [Pg.1024]

Phenylethylene boils at 145-146° at atmospheric pressure, but the high temperature causes a considerable loss by polymerisation. It has been stated that the addition of about 0-1 per cent, by weight of hydroquinone considerably reduces the extent of polymerisation at atmospheric pressure. [Pg.1024]

Vinyl ethers and a,P unsaturated carbonyl compounds cyclize in a hetero-Diels-Alder reaction when heated together in an autoclave with small amounts of hydroquinone added to inhibit polymerisation. Acrolein gives 3,4-dihydro-2-methoxy-2JT-pyran (234,235), which can easily be hydrolysed to glutaraldehyde (236) or hydrogenated to 1,5-pentanediol (237). With 2-meth5lene-l,3-dicarbonyl compounds the reaction is nearly quantitative (238). [Pg.115]

Acrolein produced in the United States is stabilized against free-radical polymerization by 1000—2500 ppm of hydroquinone and is protected somewhat against base-catalyzed polymerization by about 100 ppm of acetic acid. To ensure stabiUty, the pH of a 10% v/v solution of acrolein in water should be below 6. [Pg.129]

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

The polymeric products can be made to vary widely in physical properties through controlled variation in the ratios of monomers employed in thek preparation, cross-linking, and control of molecular weight. They share common quaHties of high resistance to chemical and environmental attack, excellent clarity, and attractive strength properties (see Acrylic ester polymers). In addition to acryHc acid itself, methyl, ethyl, butyl, isobutyl, and 2-ethylhexyl acrylates are manufactured on a large scale and are available in better than 98—99% purity (4). They usually contain 10—200 ppm of hydroquinone monomethyl ether as polymerization inhibitor. [Pg.148]

The esters are produced in minimum purity of 99.5%. The yield, based on acryflc acid, is in the range of about 95—98% depending on the ester and reaction conditions. Monomethyl ether of hydroquinone (10—100 ppm) is added as polymeri2ation inhibitor and the esters are used in this form in most... [Pg.154]

Acryhc acid and esters are stabilized with minimum amounts of inhibitors consistent with stabihty and safety. The acryhc monomers must be stable and there should be no polymer formation for prolonged periods with normal storage and shipping (4,106). The monomethyl ether of hydroquinone (MEHQ) is frequentiy used as inhibitor and low inhibitor grades of the acrylate monomers are available for bulk handling. MEHQ at 10—15 ppm is generally... [Pg.156]

In normal practice, inhibitors such as hydroquinone (HQ) [123-31 -9] or the monomethyl ether of hydroquinone (MEHQ) [150-76-5] are added to acrylic monomers to stabilize them during shipment and storage. Uninhibited acrylic monomers should be used prompdy or stored at 10°C or below for no longer than a few weeks. Improperly iahibited monomers have the potential for violent polymerizations. HQ and MEHQ require the presence of oxygen to be effective inhibitors therefore, these monomers should be stored in contact with air and not under inert atmosphere. Because of the low concentration of inhibitors present in most commercial grades of acrylic monomers (generally less than 100 ppm), removal before use is not normally required. However, procedures for removal of inhibitors are available (67). [Pg.165]

Acrylonitrile will polymerize violendy in the absence of oxygen if initiated by heat, light, pressure, peroxide, or strong acids and bases. It is unstable in the presence of bromine, ammonia, amines, and copper or copper alloys. Neat acrylonitrile is generally stabilized against polymerization with trace levels of hydroquinone monomethyl ether and water. [Pg.185]

During the 1980s few innovations were disclosed in the Hterature. The hydroxylation of phenol by hydrogen peroxide has been extensively studied in order to improve the catalytic system as well as to master the ratio of hydroquinone to catechol. Other routes, targeting a selective access to one of the dihydroxyben2enes, have appeared. World production capacities according to countries and process types are presented in Table 1. [Pg.486]

The yield of hydroquinone is 85 to 90% based on aniline. The process is mainly a batch process where significant amounts of soHds must be handled (manganese dioxide as well as metal iron finely divided). However, the principal drawback of this process resides in the massive coproduction of mineral products such as manganese sulfate, ammonium sulfate, or iron oxides which are environmentally not friendly. Even though purified manganese sulfate is used in the agricultural field, few solutions have been developed to dispose of this unsuitable coproduct. Such methods include MnSO reoxidation to MnO (1), or MnSO electrochemical reduction to metal manganese (2). None of these methods has found appHcations on an industrial scale. In addition, since 1980, few innovative studies have been pubUshed on this process (3). [Pg.487]

This process has been widely studied and led to the constmction of new and original industrial units. Interest in the reaction stems from the simplicity of the process as well as the absence of undesirable by-products. However, in order to be economically rehable, such a process has to give high yield of dihydroxybenzenes (based on hydrogen peroxide as well as phenol) and a great flexibiUty for the isomeric ratio of hydroquinone to catechol. This last point generated more research and led to original and commercial processes. [Pg.488]

The yield of hydroquinone based on bisphenol A is close to 90%. The phenol and the acetone formed can easily be recycled. However, this process has not been industrialized. [Pg.489]

Starting from Benzene. In the direct oxidation of benzene [71-43-2] to phenol, formation of hydroquinone and catechol is observed (64). Ways to favor the formation of dihydroxybenzenes have been explored, hence CuCl in aqueous sulfuric acid medium catalyzes the hydroxylation of benzene to phenol (24%) and hydroquinone (8%) (65). The same effect can also be observed with Cu(II)—Cu(0) as a catalytic system (66). Efforts are now directed toward the use of Pd° on a support and Cu in aqueous acid and in the presence of a reducing agent such as CO, H2, or ethylene (67). Aromatic... [Pg.489]

However, the vast majority of research has been devoted to synthesis involving electrophilic substitution on the aromatic ring of hydroquinone. Hence, phenylhydroquinone can be obtained by the reaction of phenyl dia onium salts (18) with hydroquinone (82). [Pg.491]

The selective monochlorination of hydroquinone by SOCI2 (84) or a combination of HCl and H2O2 (85) has been studied in various solvents. [Pg.491]

Examples of the hydroquinone inclusion compounds (91,93) are those formed with HCl, H2S, SO2, CH OH, HCOOH, CH CN (but not with C2H 0H, CH COOH or any other nitrile), benzene, thiophene, CH, noble gases, and other substances that can fit and remain inside the 0.4 nm cavities of the host crystals. That is, clathration of hydroquinone is essentially physical in nature, not chemical. A less than stoichiometric ratio of the guest may result, indicating that not all void spaces are occupied during formation of the framework. Hydroquinone clathrates are very stable at atmospheric pressure and room temperature. Thermodynamic studies suggest them to be entropic in nature (88). [Pg.70]

Thermotropic polycarbonates have been prepared from mixtures of 4,4 -dihydroxybiphenyl and various diphenols (10). Nematic melts were found for copolycarbonates prepared from methyfliydroquiaone, chlorohydroquiaone, 4,4 -dihydroxydiphenyl ether, and 4,4 -dihydroxybenzophenone. Slightly crystalline polycarbonates have been prepared from mixtures of hydroquinone and BPA (T = 154°C, =313°C, AH = 11.0 J/g (2.63 cal/g)), and... [Pg.280]


See other pages where Of hydroquinone is mentioned: [Pg.57]    [Pg.255]    [Pg.322]    [Pg.467]    [Pg.694]    [Pg.698]    [Pg.746]    [Pg.600]    [Pg.622]    [Pg.647]    [Pg.647]    [Pg.154]    [Pg.488]    [Pg.489]    [Pg.490]    [Pg.69]    [Pg.463]    [Pg.463]    [Pg.254]    [Pg.262]    [Pg.454]    [Pg.278]    [Pg.279]    [Pg.381]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Alkylation of Hydroquinone with Isobutene

Hydroquinone

Hydroquinones

Monobenzylether of hydroquinone

Oxidation of Phenol to Catechol and Hydroquinone

Oxidation of hydroquinone

Oxidation of hydroquinones

Synthesis of Hydroquinones

The Synthesis of Catechol, Resorcinol and Hydroquinone

© 2024 chempedia.info