Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleus properties

In early years of NMR, extensive studies of molecular dynamics were carried out using relaxation time measurements for spin 1/2 nuclei (mainly for 1H, 13C and 31P). However, difficulties associated with assignment of dipolar mechanisms and proper analysis of many-body dipole-dipole interactions for spin 1/2 nuclei have restricted their widespread application. Relaxation behaviour in the case of nuclei with spin greater than 1/2 on the other hand is mainly determined by the quadrupolar interaction and since the quadrupolar interaction is effectively a single nucleus property, few structural assumptions are required to analyse the relaxation behaviour. [Pg.10]

The first reliable energy band theories were based on a powerfiil approximation, call the pseudopotential approximation. Within this approximation, the all-electron potential corresponding to interaction of a valence electron with the iimer, core electrons and the nucleus is replaced by a pseudopotential. The pseudopotential reproduces only the properties of the outer electrons. There are rigorous theorems such as the Phillips-Kleinman cancellation theorem that can be used to justify the pseudopotential model [2, 3, 26]. The Phillips-Kleimnan cancellation theorem states that the orthogonality requirement of the valence states to the core states can be described by an effective repulsive... [Pg.108]

The negative sign in equation (b 1.15.26) implies that, unlike the case for electron spins, states with larger magnetic quantum number have smaller energy for g O. In contrast to the g-value in EPR experiments, g is an inlierent property of the nucleus. NMR resonances are not easily detected in paramagnetic systems because of sensitivity problems and increased linewidths caused by the presence of unpaired electron spins. [Pg.1557]

The energy obtained from a calculation using ECP basis sets is termed valence energy. Also, the virial theorem no longer applies to the calculation. Some molecular properties may no longer be computed accurately if they are dependent on the electron density near the nucleus. [Pg.84]

The observation of nitration nitrosation for mesitylene is important, for it shows that this reaction depends on the reactivity of the aromatic nucleus rather than on any special properties of phenols or anilines. [Pg.58]

The most notable studies are those of Ingold, on the orienting and activating properties of substituents in the benzene nucleus, and of Dewar on the reactivities of an extensive series of polynuclear aromatic and related compounds ( 5.3.2). The former work was seminal in the foundation of the qualitative electronic theory of the relationship between structure and reactivity, and the latter is the most celebrated example of the more quantitative approaches to the same relationship ( 7.2.3). Both of the series of investigations employed the competitive method, and were not concerned with the kinetics of reaction. [Pg.76]

Orbitals are described by specifying their size shape and directional properties Spherically symmetrical ones such as shown m Figure 1 1 are called y orbitals The let ter s IS preceded by the principal quantum number n n = 2 3 etc ) which speci ties the shell and is related to the energy of the orbital An electron m a Is orbital is likely to be found closer to the nucleus is lower m energy and is more strongly held than an electron m a 2s orbital... [Pg.8]

Structure determines properties and the properties of atoms depend on atomic struc ture All of an element s protons are m its nucleus but the element s electrons are dis tributed among orbitals of varying energy and distance from the nucleus More than any thing else we look at its electron configuration when we wish to understand how an element behaves The next section illustrates this with a brief review of ionic bonding... [Pg.10]

Carbon-13 nmr. Carbon-13 [14762-74-4] nmr (1,2,11) has been available routinely since the invention of the pulsed ft/nmr spectrometer in the early 1970s. The difficulties of studying carbon by nmr methods is that the most abundant isotope, has a spin, /, of 0, and thus cannot be observed by nmr. However, has 7 = 1/2 and spin properties similar to H. The natural abundance of is only 1.1% of the total carbon the magnetogyric ratio of is 0.25 that of H. Together, these effects make the nucleus ca 1/5700 times as sensitive as H. The interpretation of experiments involves measurements of chemical shifts, integrations, andy-coupling information however, these last two are harder to determine accurately and are less important to identification of connectivity than in H nmr. [Pg.404]

Polypropylene molecules repeatedly fold upon themselves to form lamellae, the sizes of which ate a function of the crystallisa tion conditions. Higher degrees of order are obtained upon formation of crystalline aggregates, or spheruHtes. The presence of a central crystallisation nucleus from which the lamellae radiate is clearly evident in these stmctures. Observations using cross-polarized light illustrates the characteristic Maltese cross model (Fig. 2b). The optical and mechanical properties ate a function of the size and number of spheruHtes and can be modified by nucleating agents. Crystallinity can also be inferred from thermal analysis (28) and density measurements (29). [Pg.408]

Very early in the study of radioactivity it was deterrnined that different isotopes had different X values. Because the laws of gravity and electromagnetism were deterministic, an initial concept was that when each radioactive atom was created, its lifetime was deterrnined, but that different atoms were created having different lifetimes. Furthermore, these different lifetimes were created such that a collection of nuclei decayed in the observed manner. Later, as the probabiUstic properties of quantum mechanics came to be accepted, it was recognised that each nucleus of a given radioactive species had the same probabiUty for decay per unit time and that the randomness of the decays led to the observed decay pattern. [Pg.446]

Eor specific models of the nucleus, it is possible to compute theoretical wave functions for the states. Eor a model that assumes that the nucleus is spherical, the general properties of these wave functions have been used to compute theoretical estimates of the half-hves for y-rays of the various multipolarities. Some values from the Weisskopf estimate of these half-hves are shown in Table 7. These half-fives decrease rapidly with the y-ray energy, namely, as and, as Table 7 shows, increase rapidly with E. This theoretical half-life applies only to the y-ray decay, so if there are other modes of... [Pg.449]


See other pages where Nucleus properties is mentioned: [Pg.87]    [Pg.87]    [Pg.45]    [Pg.283]    [Pg.284]    [Pg.339]    [Pg.24]    [Pg.755]    [Pg.1410]    [Pg.1438]    [Pg.2210]    [Pg.174]    [Pg.205]    [Pg.214]    [Pg.160]    [Pg.99]    [Pg.231]    [Pg.300]    [Pg.79]    [Pg.9]    [Pg.7]    [Pg.162]    [Pg.16]    [Pg.73]    [Pg.405]    [Pg.53]    [Pg.490]    [Pg.494]    [Pg.448]    [Pg.448]    [Pg.455]   
See also in sourсe #XX -- [ Pg.50 , Pg.873 ]




SEARCH



A Properties of Magnetically Active Nuclei

AGNETIC PROPERTIES OF NUCLEI

Atomic nuclei, properties

Boron nucleus, properties

Chlorine nucleus, properties

Deuterium nucleus, properties

Finite Nucleus Effects on Properties

Fluorine nucleus, properties

General properties of nuclei

Hydrogen nucleus, properties

Magnetic properties of nuclei

Magnetic properties, nuclei

NMR Properties of Nuclei

Nitrogen nucleus, properties

Nucleus properties studies with atomic

Phosphorus nucleus, properties

Physical Properties of Atomic Nuclei and Elementary Particles

Point nucleus magnetic properties

Properties of Important NMR Nuclei

Properties of Nuclei

Properties of Selected Nuclei

Properties of Several Nuclei

Quadrupolar nucleus properties

Skill 20.5 Analyze the properties of an atomic nucleus that affect its stability

© 2024 chempedia.info