Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Size/shape

Once an exploration well has encountered hydrocarbons, considerable effort will still be required to accurately assess the potential of the find. The amount of data acquired so far does not yet provide a precise picture of the size, shape and producibility of the accumulation. [Pg.5]

Obtaining high-quality nanocry stalline samples is the most important task faced by experimentalists working in tire field of nanoscience. In tire ideal sample, every cluster is crystalline, witli a specific size and shape, and all clusters are identical. Wlrile such unifonnity can be expected from a molecular sample, nanocrystal samples rarely attain tliis level of perfection more typically, tliey consist of a collection of clusters witli a distribution of sizes, shapes and stmctures. In order to evaluate size-dependent properties quantitatively, it is important tliat tire variations between different clusters in a nanocrystal sample be minimized, or, at tire very least, tliat tire range and nature of tire variations be well understood. [Pg.2900]

The property to be predicted must be considered when choosing the method for simulating a polymer. Properties can be broadly assigned into one of two categories material properties, primarily a function of the nature of the polymer chain itself, or specimen properties, primarily due to the size, shape, and phase... [Pg.310]

Orbitals are described by specifying their size shape and directional properties Spherically symmetrical ones such as shown m Figure 1 1 are called y orbitals The let ter s IS preceded by the principal quantum number n n = 2 3 etc ) which speci ties the shell and is related to the energy of the orbital An electron m a Is orbital is likely to be found closer to the nucleus is lower m energy and is more strongly held than an electron m a 2s orbital... [Pg.8]

The compound shown is diethylstilbestrol (DES) it has a number of therapeutic uses in estrogen replacement therapy DES is not a steroid but can adopt a shape that allows it to mimic estrogens such as estradiol (p 1100) and bind to the same receptor sites Construct molecular models of DES and estradiol that illustrate this similanty in molecular size shape and location of polar groups... [Pg.1108]

Note that this method of standardizing D values makes no allowance for the possibility that a molecule may change size, shape, or solvation with changes in temperature. In the next section we shall survey the behavior of polymeric materials in an ultracentrifuge. We shall see that diffusion coefficients can be... [Pg.634]

Process structures with appropriate quantum or molecular mechanical technique to compute desired properties eg, relative energies, dipole moment, conformer populations, size, shape, etc. [Pg.158]

Nondestmctive evaluation, also termed nondestmctive testing or nondestmctive inspection, is extensively used in weld testing (14). Nondestmctive tests do no impair the serviceabiUty of the material or component under stress. The most widely used tests for evaluation of welds are Hquid penetrant, magnetic particle, ultrasonics, and radiography. Acoustic-emission tests are increasingly used. Nondestmctive tests detect and characterize, in terms of size, shape, and location, the various types of weld discontinuities that can occur. [Pg.349]

Peel tests are accompHshed using many different geometries. In the simplest peel test, the T-peel test, the adherends are identical in size, shape, and thickness. Adherends are attached at thek ends to a tensile testing machine and then separated in a "T" fashion. The temperature of the test, as well as the rate of adherend separation, is specified. The force requked to open the adhesive bond is measured and the results are reported in terms of newtons per meter (pounds per inch, ppi). There are many other peel test configurations, each dependent upon the adhesive appHcation. Such tests are well described in the ASTM hterature. [Pg.232]

Source sampling of particulates requites isokinetic removal of a composite sample from the stack or vent effluent to determine representative emission rates. Samples are coUected either extractively or using an in-stack filter EPA Method 5 is representative of extractive sampling, EPA Method 17 of in-stack filtration. Other means of source sampling have been used, but they have been largely supplanted by EPA methods. Continuous in-stack monitors of opacity utilize attenuation of radiation across the effluent. Opacity measurements are affected by the particle size, shape, size distribution, refractive index, and the wavelength of the radiation (25,26). [Pg.384]

Physical testing appHcations and methods for fibrous materials are reviewed in the Hterature (101—103) and are generally appHcable to polyester fibers. Microscopic analyses by optical or scanning electron microscopy are useful for evaluating fiber parameters including size, shape, uniformity, and surface characteristics. Computerized image analysis is often used to quantify and evaluate these parameters for quaUty control. [Pg.332]

Fluidyibsorbamy. Fluids like ink penetrate into paper during the printing process. The further the ink penetrates, the less glossy the print. The degree of penetration in paper is generally a function of the paper porosity and wettabiUty by the fluid. It can be controlled by the particle size, shape, and chemical nature of the filler or filler surface. In particular, plate-like fillers, such as clays, tend to produce the best fluid holdout because they tend to overlap and reduce the porosity at the paper surface (see Inks). [Pg.370]

The constant given the value 5 in equation 1 depends on particle size, shape, and porosity it can be assumed to be 5 for low porosities. Although equation 1 has been found to work reasonably well for incompressible cakes over narrow porosity ranges, its importance is limited in cake filtration because it cannot be used for most practical, compressible cakes. It can, however, be used to demonstrate the high sensitivity of the pressure drop to the cake porosity and to the specific surface of the soHds. [Pg.391]

Sheet mica occurs in pockets within pegmatite. When exploring for sheet mica, test pits are sunk to determine the presence of pockets and quaUty of the mica. The size, shape, and attitude of the pegmatite is deterrnined by stripping and trenching. These procedures are cosdy and problematic, but the quahty can be deterrnined to a sufficient degree (5). [Pg.286]

Microscopes are also classified by the type of information they present size, shape, transparency, crystallinity, color, anisotropy, refractive indices and dispersion, elemental analyses, and duorescence, as well as infrared, visible, or ultraviolet absorption frequencies, etc. One or more of these microscopes are used in every area of the physical sciences, ie, biology, chemistry, and physics, and also in their subsciences, mineralogy, histology, cytology, pathology, metallography, etc. [Pg.328]

Adsorption. Although several types of microporous soHds are used as adsorbents for the separation of vapor or Hquid mixtures, the distribution of pore diameters does not enable separations based on the molecular-sieve effect. The most important molecular-sieve effects are shown by crystalline zeoHtes, which selectively adsorb or reject molecules based on differences in molecular size, shape, and other properties such as polarity. The sieve effect may be total or partial. [Pg.447]

Adsorption Kinetics. In zeoHte adsorption processes the adsorbates migrate into the zeoHte crystals. First, transport must occur between crystals contained in a compact or peUet, and second, diffusion must occur within the crystals. Diffusion coefficients are measured by various methods, including the measurement of adsorption rates and the deterniination of jump times as derived from nmr results. Factors affecting kinetics and diffusion include channel geometry and dimensions molecular size, shape, and polarity zeoHte cation distribution and charge temperature adsorbate concentration impurity molecules and crystal-surface defects. [Pg.449]

The large majority of activated alumina products are derived from activation of aluminum hydroxide, rehydrated alumina, or pseudoboehmite gel. Other commerical methods to produce specialty activated aluminas are roasting of aluminum chloride [7446-70-0], AIQ calcination of precursors such as ammonium alum [7784-25-0], AlH2NOgS2. Processing is tailored to optimize one or more of the product properties such as surface area, purity, pore size distribution, particle size, shape, or strength. [Pg.155]


See other pages where Size/shape is mentioned: [Pg.17]    [Pg.102]    [Pg.77]    [Pg.729]    [Pg.1400]    [Pg.2389]    [Pg.2400]    [Pg.2765]    [Pg.525]    [Pg.683]    [Pg.151]    [Pg.229]    [Pg.352]    [Pg.140]    [Pg.13]    [Pg.371]    [Pg.27]    [Pg.354]    [Pg.571]    [Pg.45]    [Pg.91]    [Pg.380]    [Pg.388]    [Pg.180]    [Pg.238]    [Pg.399]    [Pg.183]    [Pg.3]    [Pg.23]    [Pg.248]    [Pg.554]    [Pg.189]    [Pg.189]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



© 2024 chempedia.info