Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic attack by metal

In the preceding section we discussed the use of co-ordinated hydroxide as an intramolecular nucleophile. It could also act as a nucleophile to an external electrophile. Over the past few decades, there has been considerable interest in the nucleophilic properties of metal-bound hydroxide ligands. One of the principal reasons for this relates to the widespread occurrence of Lewis acidic metals at the active site of hydrolytic enzymes. There has been a lively discussion over the past thirty years on the relative merits of mechanisms involving nucleophilic attack by metal-co-ordinated hydroxide upon a substrate or attack by external hydroxide upon metal-co-ordinated substrate. As we have shown above, both of these mechanisms are possible with non-labile model systems. [Pg.127]

I, Nucleophilic Attack by Metal Anions on Propargyl Halides... [Pg.42]

Enzymes in this family are metallophosphatases that hydrolyze phosphomonoesters by means of nucleophilic attack by metal-coordinated hydroxide ions. The products are inorganic phosphate and the respective alcohol, serine or threonine in vivo, or an alcohol/phenol when alternate substrates are used in vitro. [Pg.327]

No single mechanism accounts for all the reactions. One pathway involves a concerted one-step process involving a cyclic transition state. This of necessity affords a c -product. Another possibility, more favoured in polar solvents, involves a cationic 5-coordinate intermediate [IrX(A)(CO)L2]+, which undergoes subsequent nucleophilic attack by B-. Other possibilities include a SN2 route, where the metal polarizes AB before generating the nucleophile, and radical routes. Studies are complicated by the fact that the thermodynamically more stable isolated product may not be the same as the kinetic product formed by initial addition. [Pg.141]

It has been noted (Section II,B,1) that reactions between transition metal carbonyl anions and silicon halides often fail to produce species containing silicon-transition metal bonds, and that such failure has been ascribed to nucleophilic attack by carbonyl oxygen. It is therefore interesting that compounds containing Si—O—C—transition metal linkages have recently been isolated from such reactions [Eqs. (105) (R = Me, Ph) 183) and (106)... [Pg.296]

Yamamoto Y,Nakamura I (2005) Nucleophilic Attack by Palladium Species. 14 211-240 Yasuda H (1999) Organo Rare Earth Metal Catalysis for the Living Polymerizations of Polar and Nonpolar Monomers. 2 255-283 Yasuda N, see King AO (2004) 6 205-246... [Pg.295]

A Cu(OAc)2-catalyzed intramolecular diamination of alkenes using sulfamide substrates such as compound 214 provides a route to fused thiadiazolidines 215 (Equation 48) <2005JA11250>. In this reaction, the transition metal activates the alkene toward nucleophilic attack by the first nitrogen, then becomes displaced by the second nitrogen nucleophile (a net M +z to M reduction). [Pg.553]

The logical basis for employing metal carbonyls as catalysts would be the CO activation through coordination which facilitates nucleophilic attack by water or OH" (6). The key step then may be the formation of a hydroxy-carbonyl species followed by 6-hydrogen elimination reaction (eq. 2,3). Another important elemental re-... [Pg.85]

Decarbonylation of the acyl is likely to be metal-assisted (Ru11) giving rise to a Ru carbonyl, which is subsequently decarbony-lated by nucleophilic attack by nBu3P. This phosphine can displace coordinated carbonyl, as exemplified by reaction 3 ... [Pg.248]

The reactivity of these metal hydride-metal carbonyl reactions can be correlated with the nature of the reactants in a manner consistent with the proposed mechanism nucleophilic attack by hydride on coordinated CO. Thus reactions involving the highly nucleophilic group IV hydride, Cp gZrHg, are much faster than those of group V metal hydrides. On the other hand, the relatively electrophilic neutral binary metal carbonyls all react with Cp2NbH under mild conditions (20-50° C), whereas more electron-rich complexes such as cyclopentadienylmetal carbonyls (Cp2NbH(C0), CpV(CO) ) or anionic carbonyls (V(CO)g ) show no reaction under these conditions. [Pg.256]

Nesmeyanov has provided interesting examples of apparent intramolecular nucleophilic attack by amine on carbonyl ligands (37). Angelici (38,39) has demonstrated that amine attack on cationic metal carbonyl complexes is a general reaction resulting in the formation of carbamoyl complexes ... [Pg.328]

An important variant for transition metal-catalyzed carbon-nitrogen bond formation is allylic substitution (for reviews, see1,la lh). Nucleophilic attack by an amine on an 7r-allyl intermediate, generated from either an allylic alcohol derivative,2 16,16a 16f an alkenyloxirane,17-19,19a-19d an alkenylaziridine19,19a 19d, or a propargyl alcohol derivative,21,21a 21d gives an allylic amine derivative. [Pg.695]

However, while ruthenium carbonyl was found to decompose the formate ion in basic media, the rate was slower (<0.1 mmol trimethyl ammonium formate to H2 and C02 per hour) than the rate of the water-gas shift reaction (>0.4 mmol H2/hr) at 5 atm CO and 100 °C. Increasing CO pressure decreased the formate decomposition rate. However, it was observed that increasing the CO pressure from 5 atm CO to 50 atm increased the H2 production rate to 10 mmol/hr. They proposed, in a similar manner to Pettit et al.,34 a mechanism that involved nucleophilic attack by amine (instead of hydroxide). Activation of the metal carbonyl (e.g., Ru3(CO) 2 cluster to Ru(CO)5) was suggested to be favored by dilution, increases in CO pressure, or, in the case of Group VIb metal carbonyl complexes, photolytic promotion. The mechanism is shown below in Scheme 9 ... [Pg.127]

Otsuka and coworkers—addition of ligands to Pt and Rh complexes to facilitate water activation. Most researchers in the water-gas shift field focused their research primarily on the activation of CO through coordination that facilitated the nucleophilic attack by OH- or H20. In addition to this, Ostuka and coworkers28,40,47,55,56 added a new approach. It was based on a strategy that induces two-electron transfer from a low valent metal compound to a H20 molecule that leads to a hydrido-hydroxo-metal species, M + H20 <-> MH(OH). In so doing, they predicted that nucleophilic attack by the OH- on the coordinated CO would be more facile relative to the neutral H20 molecule. [Pg.139]

A somewhat related problem is the nature of the bridged carbonyl group between two metal centers. Obvious correlations with organic ketonic behavior in general provide difficulties. In general nucleophilic attack by OR- (R = H or Me) does appear to occur at the carbon center. For R = Me, stable M- C02R complexes may often be isolated, but for R = H, transfer of hydrogen to the metal with elimination of C02 occurs readily, to yield the hydridocarbonyl. [Pg.269]

Palladium(II) is one of the most important transition metals in catalytic oxidations of allenes [1], Scheme 17.1 shows the most common reactions. Transformations involving oxidative addition of palladium(O) to aryl and vinyl halides do not afford an oxidized product and are discussed in previous chapters. The mechanistically very similar reactions, initiated by nucleophilic attack by bromide ion on a (jt-allene)pal-ladium(II) complex, do afford products with higher oxidation state and are discussed below. These reactions proceed via a fairly stable (jt-allyl)palladium intermediate. Mechanistically, the reaction involves three discrete steps (1) generation of the jt-allyl complex from allene, halide ion and palladium(II) [2] (2) occasional isomeriza-... [Pg.973]

The metal-promoted processes follow a general mechanistic route, involving the intermediate formation of an alkoxycarbonyl- or a carbamoyl-metal species from the reaction between MX2, CO and NuH (NuH = alcohol, phenol or amine), followed by nucleophilic attack by Nu H (Nu I I = alcohol, phenol or amine) (Scheme 26). [Pg.258]

The nucleophilic attack by alkoxides, amines, and water is of great interest to homogeneous catalysis. A dominant reaction in syn-gas systems is the conversion of carbonyls with water to metal hydrides and carbon dioxide ("Shift Reaction"), see Figure 2.27. [Pg.46]


See other pages where Nucleophilic attack by metal is mentioned: [Pg.463]    [Pg.463]    [Pg.282]    [Pg.6608]    [Pg.463]    [Pg.463]    [Pg.282]    [Pg.6608]    [Pg.5]    [Pg.85]    [Pg.1105]    [Pg.24]    [Pg.19]    [Pg.111]    [Pg.163]    [Pg.787]    [Pg.167]    [Pg.260]    [Pg.329]    [Pg.235]    [Pg.714]    [Pg.96]    [Pg.114]    [Pg.130]    [Pg.222]    [Pg.153]    [Pg.598]    [Pg.292]    [Pg.85]    [Pg.177]    [Pg.178]    [Pg.53]    [Pg.276]    [Pg.332]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



Attack by Nucleophiles

Metal nucleophiles

Nucleophile Nucleophilic attack

Nucleophile attack

Nucleophiles attack

Nucleophiles metallated

Nucleophilic attack

© 2024 chempedia.info