Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleic acid reduction

In conjunction with research on protein extraction from yeast, we investigated methods for the maximum recovery of protein possessing good functional properties but low in nucleic acid. Therefore, we examined the feasibility of making the yeast protein resistant to proteolysis during extraction and nucleic acid reduction. Using established extraction procedures (76), we observed... [Pg.50]

Figure 6. Influence of pH of precipitation on the extent of nucleic acid reduction in precipitated sucdnylated yeast proteins... Figure 6. Influence of pH of precipitation on the extent of nucleic acid reduction in precipitated sucdnylated yeast proteins...
Trichloroethanol may be used analogously. The 2,2,2-trichloroethyl (Tee) group is best removed by reduction with copper-zinc alloy in DMF at 30 °C (F. Eckstein, nucleic acid synthesis see section 4.1.1. [Pg.167]

One important class of integral equation theories is based on the reference interaction site model (RISM) proposed by Chandler [77]. These RISM theories have been used to smdy the confonnation of small peptides in liquid water [78-80]. However, the approach is not appropriate for large molecular solutes such as proteins and nucleic acids. Because RISM is based on a reduction to site-site, solute-solvent radially symmetrical distribution functions, there is a loss of infonnation about the tliree-dimensional spatial organization of the solvent density around a macromolecular solute of irregular shape. To circumvent this limitation, extensions of RISM-like theories for tliree-dimensional space (3d-RISM) have been proposed [81,82],... [Pg.144]

Cells require a constant supply of N/ X)PH for reductive reactions vital to biosynthetic purposes. Much of this requirement is met by a glucose-based metabolic sequence variously called the pentose phosphate pathway, the hexose monophosphate shunt, or the phosphogluconate pathway. In addition to providing N/VDPH for biosynthetic processes, this pathway produces ribos 5-phosphate, which is essential for nucleic acid synthesis. Several metabolites of the pentose phosphate pathway can also be shuttled into glycolysis. [Pg.762]

The removal and reduction of the nucleic acid content of various SCPs is achieved by chemical treatment with sodium hydroxide solution or high salt solution (10%). As a result, crystals of sodium urate form and are removed from the SCP solution.16,17 The quality of SCP can be upgraded by the destruction of cell walls. That may enhance the digestibility of SCP. With chemical treatment the nucleic acid content of SCP is reduced. [Pg.341]

Decreased cerebral blood flow, resulting from acute arterial occlusion, reduces oxygen and glucose delivery to brain tissue with subsequent lactic acid production, blood-brain barrier breakdown, inflammation, sodium and calcium pump dysfunction, glutamate release, intracellular calcium influx, free-radical generation, and finally membrane and nucleic acid breakdown and cell death. The degree of cerebral blood flow reduction following arterial occlusion is not uniform. Tissue at the... [Pg.39]

The most important product of the hexose monophosphate pathway is reduced nicotinamide-adenine dinucleotide phosphate (NADPH). Another important function of this pathway is to provide ribose for nucleic acid synthesis. In the red blood cell, NADPH is a major reducing agent and serves as a cofactor in the reduction of oxidized glutathione, thereby protecting the cell against oxidative attack. In the syndromes associated with dysfunction of the hexose monophosphate pathway and glutathione metabolism and synthesis, oxidative denaturation of hemoglobin is the major contributor to the hemolytic process. [Pg.2]

Nucleic acid pathways (Mg, Zn, Fe/S, B12 or Fe20) P-carbon oxidation/reduction (flavin, Fe)... [Pg.141]

There is always interest in the photochemistry of the pyrimidine nucleic acid bases and related simple pyrimidinones, due to its importance in genetic mutation. In addition to damaging DNA, photo-induced reactions may also repair the damage, as in the reduction, by FADH, of the thymine glycol 64 back to thymine <06JACS10934>. Another report related to repair of DNA involved a model study, by means of the linked dimer 65, of the involvement of tryptophan in the electron-transfer leading to reversion of thymine oxetane adducts <06OBC291>. [Pg.402]

Many organic and inorganic compounds, fibers, and particles are capable of damaging nucleic acids by generating reactive oxygen species via the reduction of dioxygen. These stimuli include different classes of organic compounds, classic prooxidants (anticancer antibiotics, various quinones, asbestos fibers, and so on), and even antioxidants, which can be oxidized in the presence of transition metal ions. [Pg.839]


See other pages where Nucleic acid reduction is mentioned: [Pg.3449]    [Pg.3449]    [Pg.476]    [Pg.234]    [Pg.151]    [Pg.475]    [Pg.572]    [Pg.126]    [Pg.82]    [Pg.852]    [Pg.245]    [Pg.852]    [Pg.75]    [Pg.298]    [Pg.1461]    [Pg.106]    [Pg.256]    [Pg.52]    [Pg.185]    [Pg.127]    [Pg.195]    [Pg.233]    [Pg.350]    [Pg.351]    [Pg.356]    [Pg.84]    [Pg.221]    [Pg.363]    [Pg.225]    [Pg.71]    [Pg.453]    [Pg.29]    [Pg.129]    [Pg.263]    [Pg.13]    [Pg.26]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



© 2024 chempedia.info