Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear Overhauser enhancement structure determination

N-protonation the absolute magnitude of the Ad values is larger than for Af-methylation <770MR(9)53>. Nuclear relaxation rates of and have been measured as a function of temperature for neat liquid pyridazine, and nuclear Overhauser enhancement has been used to separate the dipolar and spin rotational contributions to relaxation. Dipolar relaxation rates have been combined with quadrupole relaxation rates to determine rotational correlation times for motion about each principal molecular axis (78MI21200). NMR analysis has been used to determine the structure of phenyllithium-pyridazine adducts and of the corresponding dihydropyridazines obtained by hydrolysis of the adducts <78RTC116>. [Pg.8]

The 13C NMR sensitivity can sometimes be a problem, but for the kind of samples studied here the effective concentration of monomer units is several molar which does not place excessive demands on present Fourier transform NMR spectrometers. In addition to the sensitivity of the chemical shift to structure (9), the relaxation of protonated carbons is dominated by dipole-dipole interaction with the attached proton (9). The dependence of the relaxation parameters T, or spin-lattice, and Tor spin-spin, on isotropic motional correlation time for a C-H unit is shown schematically in Figure 1. The T1 can be determined by standard pulse techniques (9), while the linewidth at half-height is often related to the T2. Another parameter which is related to the correlation time is the nuclear Overhauser enhancement factor, q. The value of this factor for 13C coupled to protons, varies from about 2 at short correlation times to 0.1 at long correlation... [Pg.503]

The results that have been obtained indicate that the major influence of the crystalline regions on segmental motions, and hence to the structure of the non-crystalline regions, is in the linewidth and T2. The different morphologies are reflected in different values of T2- The segmental motions in long chain molecules which exert major influence on the spin-lattice relaxation times and the nuclear Overhauser enhancements are not in general the same motions which determine the resonant linewidth. [Pg.200]

High resolution multidimensional NMR experiments can provide the dendrimer chemist with a wealth of additional information extending far beyond the determination of the molecular structure. In the interpretation of (2D)-NOESY (NOESY=nuclear Overhauser enhancement spectroscopy) spectra, a knowledge of the spatial interrelationships between protons in different parts of the dendrimer scaffold can be acquired from proton-proton NOE interactions. At the same time, the prevailing conformation of the dendritic branches in the solvent used can be deduced from this information. Furthermore, studies of dendrimer/sol-vent interactions and the influence of solvent on the spatial structure of the dendrimer are also possible [22]. Thus the information content of such NMR experiments resembles that of small-angle scattering experiments on dissolved dendrimers (see Section 7.6). [Pg.262]

Conformational analyses of JOM-13 and [L-Ala3]DPDPE have proven to be critical for the determination of the bioactive conformation of enkephalin-like peptides at the delta receptor. H-NMR studies of JOM-13 in aqueous solution revealed that this tetrapeptide exists in two distinct conformations on the NMR time scale as evidenced by two sets of resonances [63]. Large differences in the observed chemical shifts and coupling constants for the D-Cys2 residue in the two conformers suggested that the major differences between the two NMR conformers reside in the disulfide portion of the molecule however, a paucity of conformationally informative nuclear Overhauser enhancement (NOE) interactions precluded the development of a detailed structural model from the NMR studies. In order to develop such a model a thorough conformational analysis of JOM-13 was undertaken, in which the NMR data were complemented by x-ray diffraction results and by molecular mechanics calculations [64]. The results indicate that the 11-... [Pg.164]

However, one of the interesting aspects of NMR structural results is that they often suggest no discernible solution structure for small systems, such as a tri- or tetra-peptides. This is due to the flexibility and structural variance displayed by these sample systems. However, the lack of interactions between parts of the molecule, which normally are detected via Nuclear Overhauser enhancements and refined into molecular structures during NMR structural determinations, should not be interpreted as a lack of a solution structure. It is the slow time scale of NMR, coupled with the rapidly interconverting conformations, which weakens these effects to the point where they can no longer be detected with certainty, and structural techniques which operate on a much faster time scale (e.g., UV-CD spectroscopy, or forms of vibrational spectroscopy) demonstrate that there is a preferred class of solution conformers even in small peptide systems. [Pg.94]

The structure determination of organic molecules in solution — constitution, configuration and conformation — is probably the most important application of high-resolution NMR spectroscopy. Sophisticated methods based on classical NMR parameters like chemical shifts, /-couplings and nuclear Overhauser enhancement (NOE) have been developed for deriving structural models.1 2 The approach has been successfully applied to a vast number of molecules including thousands of biomacromolecules and uncountable natural and synthetic products. [Pg.194]

A third type of information available from NMR comes from the nuclear Overhauser enhancement or NOE. This is a direct through-space interaction of two nuclei. Irradiation of one nucleus with a weak radio frequency signal at its resonant frequency will equalize the populations in its two energy levels. This perturbation of population levels disturbs the populations of nearby nuclei so as to enhance the intensity of absorbance at the resonant frequency of the nearby nuclei. This effect depends only on the distance between the two nuclei, even if they are far apart in the bonding network, and varies in intensity as the inverse sixth power of the distance. Generally the NOE can only be detected between protons (XH nuclei) that are separated by 5 A or less in distance. These measured distances are used to determine accurate three-dimensional structures of proteins and nucleic acids. [Pg.6]

There are three aspects to consider. First, we summarize briefly the underlying computational framework needed and the general strategy used in the structure determination. Second, we cover the use of 2D, 3D, and 4D methods to permit the sequential assignment of peaks to specific amino acids. Finally, we describe the use of nuclear Overhauser enhancements and spin coupling constants to provide restraints on interproton distances and bond angles, and we indicate how dipolar coupling and chemical shifts can sometimes add further information on molecular conformation. [Pg.358]

A wide variety of chemical and spectroscopic techniques has been used to determine functionality in humic substances. Although nuclear magnetic resonance (NMR) spectroscopy has been used for a much shorter period of time than most other techniques for determining functional group concentrations, this technique has provided far more definitive information than all other methods combined. However, substantially more work must be done to obtain the quantitative data that are necessary for both structural elucidation and geochemical studies. In order to increase the accuracy of functional group concentration measurements, the effect of variations in nuclear Overhauser enhancement (NOE) and relaxation times must be evaluated. Preliminary results suggest that spectra of fractions isolated from humic substances should be better resolved and more readily interpreted than spectra of unfractionated samples. [Pg.561]

As mentioned above, the determination of atomic level structure, i.e., the backbone torsion angles for an oriented protein fiber, is possible by using both solid-state NMR method described here and specifically isotope labeling. This is basically to obtain the angle information. Another structural parameter is distance between the nuclei for atomic coordinate determination. The observation of Nuclear Overhauser Enhancements (NOEs) between hydrogen atoms is a well known technique to determine the atomic coordinates of proteins in solution [14]. In the field of solid-state NMR, REDOR (rotational echo double resonance) for detection of weak heteronuclear dipole interactions, such as those due to C and N nuclei [15, 16] or R (rotational resonance) for detection of the distance between homonuclei, are typical methods for internuclear distance determination [17,18]. The REDOR technique has been applied to structure determination of a silk fibroin model compound [19]. In general, this does not require orientation of the samples in the analysis, but selective isotope labeling between specified nuclear pairs in the samples is required which frequently becomes a problem. A review of these approaches has appeared elsewhere [16]. [Pg.308]

Modern high-field H NMR techniques (correlated spectroscopy (COSY), heteronuclear chemical shift correlation (HETCOR), nuclear Overhauser enhancement (NOE), etc.), which generally permit determination of the chemical shifts and coupling constants of all protons (and connectivities between certain groups), have greatly simplified the structural determination of organic natural products (e.g., 231-235). This has certainly been the case in the field of sarpagine alkaloids. [Pg.151]

NMR has become a standard tool for structure determination and, in particular, for these of Strychnos alkaloids. The last general article in this field was authored by J. Sapi and G. Massiot in 1994 [65] and described the advances in spectroscopic methods applied to these molecules. More recently, strychnine (1) has even been used to illustrate newly introduced experiments [66]. We comment, here, on their advantages and sum up the principles of usual 2D experiments in Fig. (1) and Fig. (2) (COSY Correlation SpectroscopY, TOCSY TOtal Correlation SpectroscopY, NOESY Nuclear Overhauser Enhancement SpectroscopY, ROESY Rotating frame Overhauser Enhancement SpectroscopY, HMQC Heteronuclear Multiple Quantum Coherrence, HMBC Heteronuclear Multiple Bond Correlation). This section updates two areas of research in the field new H and 13C NMR experiments with gradient selection or/and selective pulses, 15N NMR, and microspectroscopy. To take these data into account, another section comments on the structure elucidation of new compounds isolated from Strychnos. It covers the literature from 1994 to early 2000. [Pg.1040]

The elucidation of the scalar coupling network by the correlation experiments is, apart from small molecules, not sufficient for the unambiguous, sequential and stereo-specific assignment. The complementary information of spatially adjacent protons is obtained via cross-relaxation experiments, the laboratory-frame nuclear Overhauser enhancement spectroscopy (NOESY) and the rotating-frame nuclear Overhauser effect spectroscopy (ROESY). These experiments provide also the distance restraints for the structure determination and help to recognize exchange processes. [Pg.708]


See other pages where Nuclear Overhauser enhancement structure determination is mentioned: [Pg.697]    [Pg.194]    [Pg.336]    [Pg.163]    [Pg.60]    [Pg.633]    [Pg.50]    [Pg.386]    [Pg.366]    [Pg.821]    [Pg.151]    [Pg.774]    [Pg.3]    [Pg.263]    [Pg.177]    [Pg.148]    [Pg.217]    [Pg.281]    [Pg.55]    [Pg.210]    [Pg.388]    [Pg.774]    [Pg.409]    [Pg.502]    [Pg.352]    [Pg.286]    [Pg.162]    [Pg.138]    [Pg.125]    [Pg.125]    [Pg.555]    [Pg.52]    [Pg.55]   


SEARCH



Enhancer structure

Nuclear Overhauser

Nuclear Overhauser enhancement

Nuclear structure

Overhauser

Overhauser enhancement

Structure enhancement

© 2024 chempedia.info