Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance spectroscopy analytical procedures

There are a variety of analytical methods commonly used for the characterization of neat soap and bar soaps. Many of these methods have been pubUshed as official methods by the American Oil Chemists Society (29). Additionally, many analysts choose United States Pharmacopoeia (USP), British Pharmacopoeia (BP), or Pood Chemical Codex (FCC) methods. These methods tend to be colorimetric, potentiometric, or titrametric procedures. However, a variety of instmmental techniques are also frequendy utilized, eg, gas chromatography, high performance Hquid chromatography, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry. [Pg.159]

The coupling of LC (liquid chromatography) with NMR (nuclear magnetic resonance) spectroscopy can be considered now to be a standard analytical technique. Today, even more complex systems, which also include mass spectrometry (MS), are used. The question arises as to how such systems are handled efficiently with an increasing cost and a decreasing availability of skilled personal. LC-NMR and LC-NMR/MS combine the well-established techniques of LC, NMR and MS. For each of those techniques, various automation procedures and software packages are available and used in analytical laboratories. However, due to the necessary interfacing of such techniques, completely new demands occur and additional problems have to overcome. [Pg.24]

One of the most promising techniques for on-line monitoring of intracellular components is nuclear magnetic resonance spectroscopy (NMR), which offers the possibility of measuring several intracellular components directly. Some applications are listed in Table 22-3. Although this method is still restricted to relatively small bioreactors (a few mL), requires high cell densities, and often entails complicated analytical procedures, it offers tremendous potential for biotechnology [169-173]. [Pg.339]

Characterization Tools for Pyrolysis Oils. It wasn t too many years ago that the only tools available to the scientist interested in pyrolysis oil composition were gas chromatography and thermogravi-metric analysis. The complexity of the pyrolysis oils demands high performance equipment, and a list of such equipment mentioned during the symposium would include proton and carbon nuclear magnetic resonance spectroscopy, free-jet molecular beam/mass spectrometry (16.25), diffuse reflectEuice Fourier transform infrared spectrometry ( ), photoelectron spectroscopy ( ), as well as procedures such as computerized multivariate analysis methods (32) - truly a display of the some of the most sophisticated analytical tools known to man, and a reflection of the difficulty of the oil composition problem. [Pg.3]

Standard laboratory practices and procedures were followed. Eye protection and a functioning fume hood, glassware, magnetic and mechanical stirrers, chromatography columns and column materials, rotary evaporator, and vacuum pump were required. Chemicals for syntheses were either commercially available or synthesized by following the standard reported procedures. Compounds were routinely checked by solution nuclear magnetic resonance spectroscopy (NMR) and other appropriate spectroscopic and analytical methods. [Pg.114]

Nuclear magnetic resonance spectroscopy and mass spectrometry have been used for the analysis of MDP and its analogues, as previously discussed, and, sometimes also infra-red spectroscopy (20, 73). In this section, other analytical procedures useful in analysis and determination of physico-chemical specification of commercially available MDP will be reviewed briefly. [Pg.34]

After purification, quality control of solvent purity is necessary. For this purpose, many different analytical methods are utilized. Generally, chromatographic methods such as GC, GC-MS, and HPLC are used. Moreover, UV, infrared, and nuclear magnetic resonance spectroscopy can also be applied but they tend to be less sensitive toward trace impurities. Water in organic solvents is usually determined by Karl-Fisher titration. On the basis of experimental data obtained before and after purification, the efficiency of the clean-up procedure is determined. In general, the efficiency of purification, e.g., the recovery, is expressed by the coefficient R. This parameter is defined as the ratio of the amount of impurities removed to the amount of solvent before purification ... [Pg.4440]

Many techniques for the analysis of anthocyanins have been used for almost a century and are still of importance, along with considerable advances in technologies such as mass spectroscopy (MS) and nuclear magnetic resonance (NMR). This section summarizes the analytical procedures for quantitative and qualitative analyses of anthocyanins, including classical and modem techniques. [Pg.480]

Several methods are available in the literature for the measurement of aliphatic amines in biological samples [28]. Problems with specificity and separation and cumbersome derivatisation and/or extraction procedures have limited the use of these techniques on a larger scale in clinical practice. The lack of a simple analytical method may have led to an underestimation of the incidence of the fish odour syndrome. For diagnosing the syndrome, an analytical technique should be used that is able to simultaneously and quantitatively measure TMA and its N-oxide in the complex matrix of human urine. Two such methods are currently available for this purpose proton nuclear magnetic resonance (NMR) spectroscopy and head-space gas analysis with gas chromatography or direct mass spectrometry (see below). [Pg.784]

The chemical aspects of these studies focus primarily on the chemical characterization of the test substance and/or mixture. The identity of the test chemical should be proven, and the analytical procedures used, such as gas or liquid chromatography, nuclear magnetic resonance spectrometry, or nass spectroscopy, should be available for audit. This would include the chromatograms or spectra from these analyses. It is imperative that raw data be left intact as they emerge from an instrument to maintain data integrity. Chro-natographic printouts are to remain attached and in sequence. If some data points are not used in the final report, the reason is to be documented and those not used are to remain with the stud/ file. [Pg.89]

The hydrocarbon ("oil") fraction of a coal pyrolysis tar prepared by open column liquid chromatography (LC) was separated into 16 subfractions by a second LC procedure. Low voltage mass spectrometry (MS), infrared spectroscopy (IR), and proton (PMR) as well as carbon-13 nuclear magnetic resonance spectrometry (CMR) were performed on the first 13 subfractions. Computerized multivariate analysis procedures such as factor analysis followed by canonical correlation techniques were used to extract the overlapping information from the analytical data. Subsequent evaluation of the integrated analytical data revealed chemical information which could not have been obtained readily from the individual spectroscopic techniques. The approach described is generally applicable to multisource analytical data on pyrolysis oils and other complex mixtures. [Pg.189]

TLC remains one of the most widely used techniques for a simple and rapid qualitative separation. The combination of TLC with spectroscopic detection techniques, such as FTIR or nuclear magnetic resonance (NMR), is a very attractive approach to analyze polymer additives. Infrared microscopy is a powerful technique that combines the imaging capabUities of optical microscopy with the chemical analysis abilities of infrared spectroscopy. FTIR microscopy allows obtaining of infrared spectra from microsized samples. Offline TLC-FTIR microscopy was used to analyze a variety of commercial antioxidants and light stabilizers. Transferring operation and identification procedure by FTIR takes about 20 min. However, the main drawbacks of TLC-FTIR are that TLC is a time-consuming technique and usually needs solvent mixtures, which makes TLC environmentally unsound, analytes must be transferred for FTIR analysis, and TLC-FTIR cannot be used for quantifying purposes. [Pg.1865]

In addition, gel-permeation chromatography (GPC), high performance liquid chromatography (HPLC) (39,80), and other analytical procedures such as nuclear magnetic resonance (NMR) (28) and infrared spectroscopy (IR) (81) are performed to determine MW, MW distribution, oligomer composition, fiinctional groups, and... [Pg.2693]


See other pages where Nuclear magnetic resonance spectroscopy analytical procedures is mentioned: [Pg.33]    [Pg.911]    [Pg.911]    [Pg.9]    [Pg.160]    [Pg.312]    [Pg.509]    [Pg.3]    [Pg.213]    [Pg.240]    [Pg.199]    [Pg.509]    [Pg.1]    [Pg.468]    [Pg.158]    [Pg.413]    [Pg.172]    [Pg.33]    [Pg.164]    [Pg.112]    [Pg.503]    [Pg.3]    [Pg.467]    [Pg.427]    [Pg.373]    [Pg.443]    [Pg.122]    [Pg.314]    [Pg.255]    [Pg.222]   
See also in sourсe #XX -- [ Pg.2 , Pg.16 , Pg.168 , Pg.169 ]




SEARCH



Analytic Procedures

Analytical procedures

Analytical spectroscopies

© 2024 chempedia.info