Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance sensitivity

Nuclear magnetic resonance (NMR) spectroscopy is a valuable technique for obtaining chemical information. This is because the spectra are very sensitive to changes in the molecular structure. This same sensitivity makes NMR a difficult case for molecular modeling. [Pg.252]

Nuclear magnetic resonance (NMR) spectroscopy is another physical technique which is especially useful for microstructure studies. Because of the sensitivity of this technique to an atom s environment in a molecule, NMR is useful for a variety of microstructural investigations We shall consider the application to copolymers now and to questions of stereoregularity in Sec. 7.11... [Pg.462]

The most common detectors in HPLC are ultraviolet, fluorescence, electrochemical detector and diffractometer. However, despite all improvements of these techniques it seems necessary to have a more selectivity and sensitivity detector for the purposes of the medical analysis. It should be therefore improvements to couple analytical techniques like infrared IR, MS, nuclear magnetic resonance (NMR), inductively coupled plasma-MS (ICP-MS) or biospecific detectors to the LC-system and many efforts have been made in this field. [Pg.342]

As with other diffraction techniques (X-ray and electron), neutron diffraction is a nondestructive technique that can be used to determine the positions of atoms in crystalline materials. Other uses are phase identification and quantitation, residual stress measurements, and average particle-size estimations for crystalline materials. Since neutrons possess a magnetic moment, neutron diffraction is sensitive to the ordering of magnetically active atoms. It differs from many site-specific analyses, such as nuclear magnetic resonance, vibrational, and X-ray absorption spectroscopies, in that neutron diffraction provides detailed structural information averaged over thousands of A. It will be seen that the major differences between neutron diffraction and other diffiaction techniques, namely the extraordinarily... [Pg.648]

Electrochemical nuclear magnetic resonance (NMR) is a relatively new technique that has recently been reviewed (Babu et al., 2003). NMR has low sensitivity, and a typical high-held NMR instrument needs 10 to 10 NMR active atoms (e.g., spins), to collect good data in a reasonable time period. Since 1 cm of a single-crystal metal contains about 10 atoms, at least 1 m of surface area is needed to meet the NMR sensitivity requirement. This can be met by working with carbon-supported platinum... [Pg.506]

D. A. Seeber, R. L. Cooper, L. Ciobanu, C. H. Pennington 2001, (Design and testing of high sensitivity micro-receiver coil apparatus for nuclear magnetic resonance and imaging), Rev. Sci. Instrum. 72, 2171. [Pg.139]

Spectroscopic analyses are widely used to identify the components of copolymers. Infrared (IR) spectroscopy is often sufficient to identify the comonomers present and their general concentration. Nuclear magnetic resonance (NMR) spectrometry is a much more sensitive tool for analysis of copolymers that can be used to accurately quantify copolymer compositions and provide some information regarding monomer placement. [Pg.110]

Because carotenoids are light- and oxygen-sensitive, a closed-loop hyphenated technique such as the on-line coupling of high performance liquid chromatography (HPLC) together with nuclear magnetic resonance (NMR) spectroscopy can be used for the artifact-free structural determination of the different isomers. [Pg.61]

In the case of heterogeneous polymers the experimental methods need to be refined. In order to analyze those polymers it is necessary to determine a set of functions / (M), which describe the distribution for each kind of heterogeneity i This could be the mass distributions of the blocks in a diblock copolymer. The standard SEC methods fail here and one needs to refine the method, e.g., by performing liquid chromatography at the critical point of adsorption [59] or combine SEC with methods, which are, for instance, sensitive to the chemical structure, e.g., high-pressure liquid chromatography (HPLC), infrared (IR), or nuclear magnetic resonance spectroscopy (NMR) [57],... [Pg.230]

P nuclear magnetic resonance (NMR) spectroscopy has been of great use in determining the coordination state and stereochemistry of the phosphorus atom at the spiro position in spirophosphonia compounds, spirophosphoranes and spiroperphosporanides. The 31P chemical shift is also sensitive to the nature of the atoms directly bonded to the spiro phosphorus center and the size of rings of the spirocyclic system. [Pg.1079]

DAS has rivb° 1.6156 and d25° 1.3992 the nuclear magnetic resonance spectrum has a singlet at 8.83 r and an A2B2 pattern at 2.62 r. Although DAS is very oxygen-sensitive, it is readily stored in sample bottles with serum caps. Complexes of many metals have been prepared exceptions include scandium, yttrium, lanthanum, and zinc. [Pg.165]

Nuclear magnetic resonance (NMR) experiments are used to study the exchange kinetics of chemical systems in equilibrium.28,68,69 As is the case for fluorescence correlation spectroscopy no perturbation of the chemical system in equilibrium is required to obtain kinetic information from NMR experiments. However, NMR is not very sensitive to concentration changes. [Pg.181]

Modern spectroscopy plays an important role in pharmaceutical analysis. Historically, spectroscopic techniques such as infrared (IR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used primarily for characterization of drug substances and structure elucidation of synthetic impurities and degradation products. Because of the limitation in specificity (spectral and chemical interference) and sensitivity, spectroscopy alone has assumed a much less important role than chromatographic techniques in quantitative analytical applications. However, spectroscopy offers the significant advantages of simple sample preparation and expeditious operation. [Pg.265]

Bowers, C. R., Sensitivity enhancement utilizing parahydrogen. In Grant, D.M., Harris, R. K. (Eds.), Encyclopedia of Nuclear Magnetic Resonance, Volume 9, 2002, p.l. [Pg.358]

The same group recently reported that the TBB defects can be brought below the nuclear magnetic resonance (NMR) detection limit by employing similar polymerization conditions (i-BuOK in THF at room temperature) in the synthesis of naphthyl-substituted PPVs 51-53 [112]. Although the absorption and PL spectra of all three polymers are similar, the EL can be finely tuned between 486 nm (for 52) and 542 nm (for 53). The external QE (studied for ITO/PEDOT/polymer/Ba/Al device) is also sensitive to the substituents pattern in the naphthyl pendant group 0.08% for 51, 0.02% for 52, and 0.54% for 53. [Pg.67]


See other pages where Nuclear magnetic resonance sensitivity is mentioned: [Pg.367]    [Pg.367]    [Pg.1437]    [Pg.549]    [Pg.106]    [Pg.35]    [Pg.418]    [Pg.100]    [Pg.449]    [Pg.881]    [Pg.160]    [Pg.391]    [Pg.26]    [Pg.774]    [Pg.200]    [Pg.377]    [Pg.116]    [Pg.181]    [Pg.218]    [Pg.435]    [Pg.286]    [Pg.3]    [Pg.25]    [Pg.434]    [Pg.951]    [Pg.94]    [Pg.27]    [Pg.355]    [Pg.397]    [Pg.47]    [Pg.20]    [Pg.377]    [Pg.265]    [Pg.319]    [Pg.325]    [Pg.173]    [Pg.246]   
See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.48 ]

See also in sourсe #XX -- [ Pg.3441 ]

See also in sourсe #XX -- [ Pg.65 , Pg.301 , Pg.367 ]




SEARCH



Magnetic sensitivity

Resonance sensitivity

© 2024 chempedia.info