Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear magnetic resonance scale

When surface active agents are considered, a further complication may be encountered. Because of their surface active nature, the surfactants not only emich at the surfaces, but also form extended structures themselves. At low concentrations, the surfactants remain as dissolved monomers or asssociate to oligomers. However, when the critical micellization concentration (cmc) is surpassed, a cooperative association is activated to micelles (1 to 10 nm) consisting typically of some 50 to 100 monomers. At stiU higher concentrations, or in the presence of cosurfactants (alcohols, amines, fatty acids, etc.), liquid crystalline phases may separate. These phases have an infinite order on the x-ray scale, but may remain as powders on the NMR (nuclear magnetic resonance) scale. When the lamellar liquid crystalline phase is in equilibrium with the liquid micellar phase the conditions are optimal for emulsions to form. The interface of the emulsion droplets (1 to 100 pm) are stabilized by the lamellar liquid crystal. Both the micelles and the emulsions may be of the oil in water (o/w) or water in oil (w/o) type. Obviously, substances that otherwise are insoluble in the dispersion medium may be solubilized in the micelles or emulsified in the emulsions. For a more thorough analysis, the reader is directed to pertinent references in the literature. ... [Pg.475]

Some preliminary laboratory work is in order, if the information is not otherwise known. First, we ask what the time scale of the reaction is surely our approach will be different if the reaction reaches completion in 10 ms, 10 s, 10 min, or 10 h. Then, one must consider what quantitative analytical techniques can be used to monitor it progress. Sometimes individual samples, either withdrawn aliquots or individual ampoules, are taken. More often a nondestructive analysis is performed, the progress of the reaction being monitored continuously or intermittently by a technique such as ultraviolet-visible spectrophotometry or nuclear magnetic resonance. The fact that both reactants and products might contribute to the instrument reading will not prove to be a problem, as explained in the next chapter. [Pg.10]

The formation of compound (1) has been established under well-defined laboratory conditions in such reaction mixtures [15,26-35]. Comparison of nuclear magnetic resonance (NMR) spectra of model compounds prepared by Bakker and Cerfontain [29] with those of the reaction mixture has also clearly shown the presence of (1). p-Sultones (1) have also been identified in commercial scale equipment under less well-defined conditions [21-24]. [Pg.368]

Field desorption mass spectrometry [1606], C nuclear magnetic resonance, and fourier-transform infrared spectroscopy [1337] have been used to characterize oil field chemicals, among them, scale inhibitors. Ion... [Pg.106]

F. Volke, A. Pampel 1995, (Membrane hydration and structure on a subnanometer scale as seen by high resolution solid state nuclear magnetic resonance POPC and P0PC/C12E04 model membranes), Biophys.J. 68, 1960-1965. [Pg.76]

More advanced scale was proposed by Kamlet and Taft [52], This phenomenological approach is very universal as may be successfully applied to the positions and intensities of maximal absorption in IR, NMR (nuclear magnetic resonance), ESR (electron spin resonance), and UV-VS absorption and fluorescence spectra, and to many other physical or chemical parameters (reaction rates, equilibrium constant, etc.). The scale is quite simple and may be presented as ... [Pg.208]

Because of the grandiose scale of the apparatus involved, SANS facilities are few in number worldwide access to them is limited and expensive. We have attempted to devise an experiment which employs solid state nuclear magnetic resonance to examine some aspects of affine deformation. [Pg.280]

The binding of calcium ion to calmodulin, a major biochemical regulator of ion pumps and receptors, occurs on a time scale about a thousand times shorter than that observed for RNA conformational change. This Ca2+-calmodulin binding, which can be followed successfully by nuclear magnetic resonance (NMR), occurs in about ten milliseconds. [Pg.46]

Vittadini, E., Dickinson, L.C., and Chinachoti, P. 2002. NMR water mobility in xanthan and locust bean gum mixtures Possible explanation of microbial response. Carbohydr. Polym. 49, 261-269. Wachner, A.M. and Jeffrey, K.R. 1999. A two-dimensional deuterium nuclear magnetic resonance study of molecular reorientation in sugar/water glasses. J. Chem. Phys. Ill, 10611-10616. Wagner, W. and Pruss, A. 1993. International equations for the saturation properties of ordinary water substance Revised according to the international temperature scale of 1990. J. Phys. Chem. Ref. Data 22, 783-787. [Pg.100]

Lett., 81, 2727 (1998). Length Scale of Dynamic Heterogeneities at the Glass Transition Determined by Multidimensional Nuclear Magnetic Resonance. [Pg.65]

A reevaluation of molecular structure of humic substances based on data obtained primarily from nuclear magnetic resonance spectroscopy, X-ray absorption near-edge structure spectroscopy, electrospray ionization-mass spectrometry, and pyrolysis studies was presented by Sutton and Sposito (2005). The authors consider that humic substances are collections of diverse, relatively low molecular mass components forming dynamic associations stabilized by hydrophobic interactions and hydrogen bonds. These associations are capable of organizing into micellar structures in suitable aqueous environments. Humic components display contrasting molecular motional behavior and may be spatially segregated on a scale of nanometers. Within this new structural context, these components comprise any molecules... [Pg.16]

Nuclear magnetic resonance (NMR) spectroscopy is a most effective and significant method for observing the structure and dynamics of polymer chains both in solution and in the solid state [1]. Undoubtedly the widest application of NMR spectroscopy is in the field of structure determination. The identification of certain atoms or groups in a molecule as well as their position relative to each other can be obtained by one-, two-, and three-dimensional NMR. Of importance to polymerization of vinyl monomers is the orientation of each vinyl monomer unit to the growing chain tacticity. The time scale involved in NMR measurements makes it possible to study certain rate processes, including chemical reaction rates. Other applications are isomerism, internal relaxation, conformational analysis, and tautomerism. [Pg.83]

Several methods are available in the literature for the measurement of aliphatic amines in biological samples [28]. Problems with specificity and separation and cumbersome derivatisation and/or extraction procedures have limited the use of these techniques on a larger scale in clinical practice. The lack of a simple analytical method may have led to an underestimation of the incidence of the fish odour syndrome. For diagnosing the syndrome, an analytical technique should be used that is able to simultaneously and quantitatively measure TMA and its N-oxide in the complex matrix of human urine. Two such methods are currently available for this purpose proton nuclear magnetic resonance (NMR) spectroscopy and head-space gas analysis with gas chromatography or direct mass spectrometry (see below). [Pg.784]


See other pages where Nuclear magnetic resonance scale is mentioned: [Pg.2818]    [Pg.1279]    [Pg.298]    [Pg.435]    [Pg.46]    [Pg.182]    [Pg.213]    [Pg.686]    [Pg.184]    [Pg.109]    [Pg.584]    [Pg.774]    [Pg.109]    [Pg.123]    [Pg.200]    [Pg.304]    [Pg.173]    [Pg.687]    [Pg.224]    [Pg.188]    [Pg.437]    [Pg.176]    [Pg.6]    [Pg.181]    [Pg.42]    [Pg.139]    [Pg.355]    [Pg.139]    [Pg.305]    [Pg.222]    [Pg.18]    [Pg.209]    [Pg.510]    [Pg.14]    [Pg.2]    [Pg.144]   
See also in sourсe #XX -- [ Pg.497 ]




SEARCH



Nuclear magnetic resonance delta scale for

Nuclear magnetic resonance frequency scale

Nuclear magnetic resonance spectrometry scale

Nuclear magnetic resonance spectroscopy time scale

Nuclear magnetic resonance time scale

© 2024 chempedia.info