Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Samples nuclear magnetic resonance

I. J. Lowe and M. Englesberg, "A fast recovery pulsed nuclear magnetic resonance sample probe using a delay line," Rev. Sci. Instrum. 45, 631-639 (1974). [Pg.385]

For bulk structural detemiination (see chapter B 1.9). the main teclmique used has been x-ray diffraction (XRD). Several other teclmiques are also available for more specialized applications, including electron diffraction (ED) for thin film structures and gas-phase molecules neutron diffraction (ND) and nuclear magnetic resonance (NMR) for magnetic studies (see chapter B1.12 and chapter B1.13) x-ray absorption fine structure (XAFS) for local structures in small or unstable samples and other spectroscopies to examine local structures in molecules. Electron microscopy also plays an important role, primarily tlirough unaging (see chapter B1.17). [Pg.1751]

Figure 7.10 Nuclear magnetic resonance spectra of three poly(methyl methacrylate samples. Curves are labeled according to the preominant tacticity of samples. [From D. W. McCall and W. P. Slichter, in Newer Methods of Polymer Characterization, B. Ke (Ed.), Interscience, New York, 1964, used with permission.]... Figure 7.10 Nuclear magnetic resonance spectra of three poly(methyl methacrylate samples. Curves are labeled according to the preominant tacticity of samples. [From D. W. McCall and W. P. Slichter, in Newer Methods of Polymer Characterization, B. Ke (Ed.), Interscience, New York, 1964, used with permission.]...
Transitions. Samples containing 50 mol % tetrafluoroethylene with ca 92% alternation were quenched in ice water or cooled slowly from the melt to minimise or maximize crystallinity, respectively (19). Internal motions were studied by dynamic mechanical and dielectric measurements, and by nuclear magnetic resonance. The dynamic mechanical behavior showed that the CC relaxation occurs at 110°C in the quenched sample in the slowly cooled sample it is shifted to 135°C. The P relaxation appears near —25°C. The y relaxation at — 120°C in the quenched sample is reduced in peak height in the slowly cooled sample and shifted to a slightly higher temperature. The CC and y relaxations reflect motions in the amorphous regions, whereas the P relaxation occurs in the crystalline regions. The y relaxation at — 120°C in dynamic mechanical measurements at 1 H2 appears at —35°C in dielectric measurements at 10 H2. The temperature of the CC relaxation varies from 145°C at 100 H2 to 170°C at 10 H2. In the mechanical measurement, it is 110°C. There is no evidence for relaxation in the dielectric data. [Pg.366]

Ideally, a mass spectmm contains a molecular ion, corresponding to the molecular mass of the analyte, as well as stmcturaHy significant fragment ions which allow either the direct deterrnination of stmcture or a comparison to Hbraries of spectra of known compounds. Mass spectrometry (ms) is unique in its abiUty to determine direcdy the molecular mass of a sample. Other techniques such as nuclear magnetic resonance (nmr) and infrared spectroscopy give stmctural information from which the molecular mass may be inferred (see Infrared technology and raman spectroscopy Magnetic spin resonance). [Pg.539]

Spectrometric Analysis. Remarkable developments ia mass spectrometry (ms) and nuclear magnetic resonance methods (nmr), eg, secondary ion mass spectrometry (sims), plasma desorption (pd), thermospray (tsp), two or three dimensional nmr, high resolution nmr of soHds, give useful stmcture analysis information (131). Because nmr analysis of or N-labeled amino acids enables determiaation of amino acids without isolation from organic samples, and without destroyiag the sample, amino acid metaboHsm can be dynamically analy2ed (132). Proteia metaboHsm and biosynthesis of many important metaboUtes have been studied by this method. Preparative methods for labeled compounds have been reviewed (133). [Pg.285]

The field of steroid analysis includes identification of steroids in biological samples, analysis of pharmaceutical formulations, and elucidation of steroid stmctures. Many different analytical methods, such as ultraviolet (uv) spectroscopy, infrared (ir) spectroscopy, nuclear magnetic resonance (nmr) spectroscopy, x-ray crystallography, and mass spectroscopy, are used for steroid analysis. The constant development of these analytical techniques has stimulated the advancement of steroid analysis. [Pg.448]

Nuclear magnetic resonance is another characterisation technique of great practical importance, and yet another that became associated with a Nobel Prize for Physics, in 1952, jointly awarded to the American pioneers, Edward Purcell and Felix Bloch (see Purcell et at. 1946, Bloch 1946). In crude outline, when a sample is placed in a strong, homogeneous and constant magnetic field and a small radiofrequency magnetic field is superimposed, under appropriate circumstances the... [Pg.237]

Although it is required to refine the above condition I in actuality, this rather simple but impressive prediction seems to have much stimulated the experiments on the electrical-conductivity measurement and the related solid-state properties in spite of technological difficulties in purification of the CNT sample and in direct measurement of its electrical conductivity (see Chap. 10). For instance, for MWCNT, a direct conductivity measurement has proved the existence of metallic sample [7]. The electron spin resonance (ESR) (see Chap. 8) [8] and the C nuclear magnetic resonance (NMR) [9] measurements have also proved that MWCNT can show metallic property based on the Pauli susceptibility and Korringa-like relation, respectively. On the other hand, existence of semiconductive MWCNT sample has also been shown by the ESR measurement [ 10], For SWCNT, a combination of direct electrical conductivity and the ESR measurements has confirmed the metallic property of the sample employed therein [11]. More recently, bandgap values of several SWCNT... [Pg.42]

Aqueous GPC can also be semiprepped in manner just like nonaqueous GPC. In this case one must consider carefully the buffers, salts, and biocides used in the eluant. If the fractions are destined for nuclear magnetic resonance experiments it will be imperative to either reduce the salt concentration in the eluant or remove salt after the initial fractionation. Likewise, if the collected samples are destined for infrared (IR) analysis, it is important to choose salts and buffers that have good IR transparency in the wavenumber ranges of interest. [Pg.551]

Other methods of identification include the customary preparation of derivatives, comparisons with authentic substances whenever possible, and periodate oxidation. Lately, the application of nuclear magnetic resonance spectroscopy has provided an elegant approach to the elucidation of structures and stereochemistry of various deoxy sugars (18). Microcell techniques can provide a spectrum on 5-6 mg. of sample. The practicing chemist is frequently confronted with the problem of having on hand a few milligrams of a product whose structure is unknown. It is especially in such instances that a full appreciation of the functions of mass spectrometry can be developed. [Pg.214]

Nuclear Magnetic Resonance. The sampie is dissolved in anhyd (0.02% w) dimethylformamide and the NH4 peak width at half-height measured at 7.38t and compared with a graph prepd from samples of AP contg known amts of w. [Pg.626]

Some preliminary laboratory work is in order, if the information is not otherwise known. First, we ask what the time scale of the reaction is surely our approach will be different if the reaction reaches completion in 10 ms, 10 s, 10 min, or 10 h. Then, one must consider what quantitative analytical techniques can be used to monitor it progress. Sometimes individual samples, either withdrawn aliquots or individual ampoules, are taken. More often a nondestructive analysis is performed, the progress of the reaction being monitored continuously or intermittently by a technique such as ultraviolet-visible spectrophotometry or nuclear magnetic resonance. The fact that both reactants and products might contribute to the instrument reading will not prove to be a problem, as explained in the next chapter. [Pg.10]


See other pages where Samples nuclear magnetic resonance is mentioned: [Pg.291]    [Pg.304]    [Pg.326]    [Pg.279]    [Pg.281]    [Pg.589]    [Pg.591]    [Pg.291]    [Pg.304]    [Pg.326]    [Pg.279]    [Pg.281]    [Pg.589]    [Pg.591]    [Pg.282]    [Pg.29]    [Pg.1519]    [Pg.1623]    [Pg.524]    [Pg.8]    [Pg.41]    [Pg.153]    [Pg.134]    [Pg.182]    [Pg.84]    [Pg.148]    [Pg.395]    [Pg.214]    [Pg.268]    [Pg.417]    [Pg.35]    [Pg.418]    [Pg.238]    [Pg.147]    [Pg.153]    [Pg.569]    [Pg.215]    [Pg.421]    [Pg.1132]    [Pg.170]    [Pg.490]   
See also in sourсe #XX -- [ Pg.301 , Pg.305 , Pg.309 ]




SEARCH



Magic/angle sample spinning nuclear magnetic resonance spectroscopy

Nuclear Magnetic Resonance Sampling

Nuclear magnetic resonance , solids magic angle sample spinning

Nuclear magnetic resonance sample amounts

Nuclear magnetic resonance sample concentration

Nuclear magnetic resonance sample preparation

Nuclear magnetic resonance sample probes

Nuclear magnetic resonance sample purity

Nuclear magnetic resonance sample tube

Nuclear magnetic resonance sampling techniques

Nuclear magnetic resonance solid samples

Nuclear magnetic resonance spectroscopy sample preparation

Sample magnetization

Sample preparation solid-state nuclear magnetic resonance

© 2024 chempedia.info