Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear intrinsic

As pointed out in the previous paragraph, the total wave function of a molecule consists of an electronic and a nuclear parts. The electrons have a different intrinsic nature from nuclei, and hence can be treated separately when one considers the issue of permutational symmetry. First, let us consider the case of electrons. These are fermions with spin and hence the subsystem of electrons obeys the Fermi-Dirac statistics the total electronic wave function... [Pg.568]

The accident at the Three Mile Island (TMI) plant in Pennsylvania in 1979 led to many safety and environmental improvements (4—6). No harm from radiation resulted to TMI workers, to the pubHc, or to the environment (7,8), although the accident caused the loss of a 2 x 10 investment. The accident at the Chernobyl plant in the Ukraine in 1986, on the other hand, caused the deaths of 31 workers from high doses of radiation, increased the chance of cancer later in life for thousands of people, and led to radioactive contamination of large areas. This latter accident was unique to Soviet-sponsored nuclear power. The Soviet-designed Chemobyl-type reactors did not have the intrinsic protection against a mnaway power excursion that is requited in the test of the world, not was there a containment building (9—11). [Pg.235]

Most modem projectiles and virtually all missiles contain explosives. The plasmas that result from explosives are intrinsic to operation of warheads, bombs, mines, and related devices. Nuclear weapons and plasmas are intimately related. Plasmas are an inevitable result of the detonation of fission and fusion devices and are fundamental to the operation of fusion devices. Compressed pellets, in which a thermonuclear reaction occurs, would be useful militarily for simulation of the effects of nuclear weapons on materials and devices. [Pg.117]

The Stern-Gerlach experiment demonstrated that electrons have an intrinsic angular momentum in addition to their orbital angular momentum, and the unfortunate term electron spin was coined to describe this pure quantum-mechanical phenomenon. Many nuclei also possess an internal angular momentum, referred to as nuclear spin. As in classical mechanics, there is a relationship between the angular momentum and the magnetic moment. For electrons, we write... [Pg.305]

In a Mdssbauer transmission experiment, the absorber containing the stable Mdssbauer isotope is placed between the source and the detector (cf. Fig. 2.6). For the absorber, we assume the same mean energy q between nuclear excited and ground states as for the source, but with an additional intrinsic shift A due to chemical influence. The absorption Une, or resonant absorption cross-section cr( ), has the same Lorentzian shape as the emission line and if we assume also the same half width , cr( ) can be expressed as ([1] in Chap. 1)... [Pg.18]

The experimentally observed quadrupole splitting AEq for Fe in inorganic compounds, metals, and solids reaches from 0 to more than 6 mm s [30, 32]. The range of AEq for other Mossbauer isotopes may be completely different because of the different nuclear quadrupole moment Q of the respective Mossbauer nucleus, and also because the EFG values may be intrinsically different due to markedly different radial distributions of the atomic orbitals (vide infra). As Q is constant for a given isotope, variations in the quadrupole coupling constants eQV can only arise from... [Pg.95]

Fig. 9.34 Monitoring of inelastic excitations by nuclear resonant scattering. The sidebands of the excitation probability densities for phonon creation, S(E), and for annihilation, S —E), are related by the Boltzmann factor, i.e., S(—E) = S E) tTvp —Elk T). This imbalance, known as detailed balance, is an intrinsic feature of each NIS spectrum and allows the determination of the temperature T at which the spectrum was recorded... Fig. 9.34 Monitoring of inelastic excitations by nuclear resonant scattering. The sidebands of the excitation probability densities for phonon creation, S(E), and for annihilation, S —E), are related by the Boltzmann factor, i.e., S(—E) = S E) tTvp —Elk T). This imbalance, known as detailed balance, is an intrinsic feature of each NIS spectrum and allows the determination of the temperature T at which the spectrum was recorded...
Crystal anapole moment is composed of the atomic magnetic moments which array in anapole structure [3]. It has the same intrinsic structure as Majorana neutrino [2], If we plant a p decay atom into this anapole lattice, the crystal anapole moment will couple to the nuclear anapole moment of the decaying nuclei. So the emitted electron will be given an additional pseudoscalar interaction by the presence of the crystal anapole moment. Then the emission probability will be increased. This is a similar process to that assumed by Zel dovich [1], The variation of the decay rate may be measured to tell whether the crystal anapole moment has an effect on the p decay or not. [Pg.312]

Errors Inherent to the Radiocarbon Dating Method. The decay of radiocarbon is radioactive, involving discrete nuclear disintegrations taking place at random dates derived from the measurement of radiocarbon levels are therefore subject to statistical errors intrinsic to the measurement, which cannot be ignored. It is because of these errors that radiocarbon dates are expressed as a time range, in the form... [Pg.308]

Most of the AIMD simulations described in the literature have assumed that Newtonian dynamics was sufficient for the nuclei. While this is often justified, there are important cases where the quantum mechanical nature of the nuclei is crucial for even a qualitative understanding. For example, tunneling is intrinsically quantum mechanical and can be important in chemistry involving proton transfer. A second area where nuclei must be described quantum mechanically is when the BOA breaks down, as is always the case when multiple coupled electronic states participate in chemistry. In particular, photochemical processes are often dominated by conical intersections [14,15], where two electronic states are exactly degenerate and the BOA fails. In this chapter, we discuss our recent development of the ab initio multiple spawning (AIMS) method which solves the elecronic and nuclear Schrodinger equations simultaneously this makes AIMD approaches applicable for problems where quantum mechanical effects of both electrons and nuclei are important. We present an overview of what has been achieved, and make a special effort to point out areas where further improvements can be made. Theoretical aspects of the AIMS method are... [Pg.440]

Intraanchor reactions, conical intersection, two-state systems, 437-438 Intramolecular electron transfer, electron nuclear dynamics (END), 349-351 Intrinsic reaction coordinate (IRC), direct molecular dynamics, theoretical background, 358-361... [Pg.82]

Radioactive decay is a nuclear process from an intrinsically unstable nucleus that emits alpha particles, beta particles and gamma rays. The loss of mass from the nucleus changes the element to one of a lower mass. Carbon dating uses the decay of the 14C nucleus, a heavy and unstable isotope of carbon, to become the stable 14N isotope. The overall process is written ... [Pg.166]

Molecular transport junctions differ from traditional chemical kinetics in that they are fundamentally electronic rather than nuclear - in chemical kinetics one talks about nucleophilic substitution reactions, isomerization processes, catalytic insertions, crystal forming, lattice changes - nearly always these are describing nuclear motion (although the electronic behavior underlies it). In general the areas of both electron transfer and electron transport focus directly on the charge motion arising from electrons, and are therefore intrinsically quantum mechanical. [Pg.12]


See other pages where Nuclear intrinsic is mentioned: [Pg.505]    [Pg.2818]    [Pg.186]    [Pg.261]    [Pg.234]    [Pg.415]    [Pg.514]    [Pg.205]    [Pg.285]    [Pg.1086]    [Pg.541]    [Pg.891]    [Pg.1228]    [Pg.440]    [Pg.256]    [Pg.55]    [Pg.472]    [Pg.238]    [Pg.83]    [Pg.538]    [Pg.330]    [Pg.129]    [Pg.140]    [Pg.160]    [Pg.33]    [Pg.334]    [Pg.112]    [Pg.222]    [Pg.198]    [Pg.255]    [Pg.244]    [Pg.170]    [Pg.91]    [Pg.263]    [Pg.205]    [Pg.219]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Intrinsic nuclear magnetic relaxation

© 2024 chempedia.info