Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Noradrenaline extracellular

The transporters for 5HT, noradrenaline and dopamine, biogenic monoamines, are genetically related, exist as single isoforms and are expressed on the surface of nerve cells, which use monoamines as (or convert them into) their cognate neurotransmitter. The single-isoform monoamine transporters fulfil all three fundamental functions (reuptake, limiting synaptic transmission, and control of the extracellular neurotransmitter concentration). Inactivation of DAT, NET, or SERT results in an increased extracellular lifetime and level of monoamine neurotransmitter, but decreased intracellular storage and evoked release (Fig. 3). [Pg.839]

Figure 4.8 Noradrenaline concentration in dialysis samples from probes implanted in the rat frontal cortex. Spontaneous efflux of noradrenaline is stable throughout a 4h sampling period ( extended basals ) but is increased markedly when either the noradrenaline reuptake inhibitor, desipramine (5 pM), or the a2-adrenoceptor antagonist, atipamezole (0.5 pM), is infused into the extracellular fluid via the microdialysis probe ( retrodialysis )... Figure 4.8 Noradrenaline concentration in dialysis samples from probes implanted in the rat frontal cortex. Spontaneous efflux of noradrenaline is stable throughout a 4h sampling period ( extended basals ) but is increased markedly when either the noradrenaline reuptake inhibitor, desipramine (5 pM), or the a2-adrenoceptor antagonist, atipamezole (0.5 pM), is infused into the extracellular fluid via the microdialysis probe ( retrodialysis )...
Several other conditions can provoke this reverse pump type of release. One is when the transmembrane ionic gradient is reversed. Experimentally this is achieved by reducing extracellular Na+. Because the neuronal uptake of monoamines from the synapse by the transporter requires co-transport of Na+ and Cl , reversing the ionic gradient (so that the Na+ concentration is lower outside, than inside, the terminals) will drive the transporter in the wrong direction. Such carrier-mediated release could explain the massive Ca +-independent release of noradrenaline during ischaemia which increases intracellular Na+ concentration and reduces intracellular K+. [Pg.100]

Exactly how this transporter carries noradrenaline across the neuronal membrane is not known but one popular model proposes that it can exist in two interchangeable states. Binding of Na+ and noradrenaline to a domain on its extracellular surface could trigger a conformation change that results in the sequential opening of outer and inner channel gates on the transporter. This process enables the translocation of noradrenaline from the extracellular space towards the neuronal cytosol. [Pg.175]

These observations question the role of noradrenaline as an initiator of anxiety as does the finding that the anti-anxiety drug, buspirone (see Chapter 9), increases the concentration of noradrenaline in the extracellular fluid in the frontal cortex of freely-moving rats (Done and Sharp 1994). Whether this is because buspirone is metabolised to l-(2-pyrimidinyl)-piperazine (1-PP), which is an a2-adrenoceptor antagonist, is uncertain. Unfortunately, no studies have investigated the effects of chronic administration of this drug on noradrenergic transmission this could be important because, unlike benzodiazepines, buspirone is effective therapeutically only after several weeks of treatment. [Pg.412]

Dailey, JW, Mason, K and Stanford, SC (1996) Increased levels of extracellular noradrenaline in the frontal cortex of rats exposed to naturalistic environmental stimuli modulation by acute systemic administration of diazepam or buspirone. Psychopharmacology 127 47-54. [Pg.421]

Figure 20.1 Schematic diagram illustrating how antidepressants increase the concentration of extraneuronal neurotransmitter (noradrenaline and/or 5-HT). In the absence of drug (b), monoamine oxidase on the outer membrane of mitochondria metabolises cytoplasmic neurotransmitter and limits its concentration. Also, transmitter released by exocytosis is sequestered from the extracellular space by the membrane-bound transporters which limit the concentration of extraneuronal transmitter. In the presence of a MAO inhibitor (a), the concentration of cytoplasmic transmitter increases, causing a secondary increase in the vesicular pool of transmitter (illustrated by the increase in the size of the vesicle core). As a consequence, exocytotic release of transmitter is increased. Blocking the inhibitory presynaptic autoreceptors would also increase transmitter release, as shown by the absence of this receptor in the figure. In the presence of a neuronal reuptake inhibitor (c), the membrane-bound transporter is inactivated and the clearance of transmitter from the synapse is diminished... Figure 20.1 Schematic diagram illustrating how antidepressants increase the concentration of extraneuronal neurotransmitter (noradrenaline and/or 5-HT). In the absence of drug (b), monoamine oxidase on the outer membrane of mitochondria metabolises cytoplasmic neurotransmitter and limits its concentration. Also, transmitter released by exocytosis is sequestered from the extracellular space by the membrane-bound transporters which limit the concentration of extraneuronal transmitter. In the presence of a MAO inhibitor (a), the concentration of cytoplasmic transmitter increases, causing a secondary increase in the vesicular pool of transmitter (illustrated by the increase in the size of the vesicle core). As a consequence, exocytotic release of transmitter is increased. Blocking the inhibitory presynaptic autoreceptors would also increase transmitter release, as shown by the absence of this receptor in the figure. In the presence of a neuronal reuptake inhibitor (c), the membrane-bound transporter is inactivated and the clearance of transmitter from the synapse is diminished...
Lena, I., Parrot, S., Deschaux, O. et al. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep - wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J. Neurosci. Res. 81, 891-9. [Pg.77]

Some less obvious phenomena of catecholamine transport and biosynthesis further illustrate the complexities of deciphering how efferents from midbrain dopamine neurons contribute to sleep-wake regulation. The plasma membrane norepinephrine transporter (NET), which is responsible for the uptake of extracellular noradrenaline, can also readily transport dopamine, and does so in vivo. This... [Pg.199]

The action of adrenaline (or noradrenaline) involves binding to an extracellular receptor, of which there are two classes, the a- and p-receptor. When the hormone binds to the P-receptor, the hormone-receptor complex activates adenyl cyclase, which catalyses the formation of cyclic AMP from ATP. [Pg.261]

The molecular mechanism of diuretics acting as antihypertensive agents is not completely clear however, use of diuretics causes a significant increase in the amount of water and electrolytes excreted in urine, which leads to a reduction in the volume of extracellular fluid and plasma. This in turn leads to a reduction of cardiac output, which is the main parameter responsible for a drop in arterial blood pressure and venous blood return. Cardiac output is gradually restored, but the hypotensive effect remains, possibly because of the reduced peripheral resistance of vessels. It is also possible that diuretics somehow lower vascular activity of noradrenaline and other factors of pressure in the organism. Methods of synthesizing thiazide diuretics used for hypertension are described in the preceding chapter. Chapter 21. [Pg.296]

Guanethidine inhibits the uptake of noradrenalin by sympathetic neurons. Guanethidin also blocks the influx of extracellular Na+-ions and therefore impairs conduction in postganglionic sympathetic neurons. Treatment with guanethidine is associated with serious and subjectively disturbing side-effects such as orthostatic hypotension, vertigo, congestion of the nasal mucosa and male sexual dysfunction. [Pg.327]

Invernizzi R, Pozzi L, Vallebuona F, et al Effect of amineptine on regional extracellular concentrations of dopamine and noradrenaline in the rat brain. J Pharmacol Exp Ther 262 769-774, 1992b Irwin RP, Magarakis NJ, Rogawski MA, et al Pregnenolone sulfate augments NMDA receptor mediated increases in intracellular Ca in cultured rat hippocampal neurons. Neurosci Lett 141 30-34, 1992... [Pg.664]

Hirche HJ, Franz C, Bos L, Bissig R, Lang R, Schramm M Myocardial extracellular K+ and H + increase and noradrenaline release as possible cause of early arrhythmias following acute coronary occlusion in pigs. J Mol Cell Cardiol 1980 12 579-593. [Pg.128]

The discovery that drugs elevating extracellular levels of noradrenaline and/or serotonin have analgesic potential was circumstantial. In I960, Paoli et al. reported that during an attempt to treat reactive depression in chronic pain patients with the tricyclic antidepressant imipramine they observed an improvement of the patients neuralgic pain. Subsequently, it became well established that antidepressant drugs can improve both depression and chronic pain states. [Pg.265]

Some transmitters, including noradrenaline, dopamine, serotonin, and various neuropeptides, are sometimes called neuromodulators rather than neurotransmitters. These compounds may not initiate a nerve impulse but may act on adenylate cyclase to increase or decrease cAMP levels and protein kinase activity. They may also diffuse through the extracellular space to influence a region of the brain greater than a single synaptic cleft. However, the distinction between transmitters and modulators is not exact. [Pg.1782]

Koizumi S, Fujishita K, Tsuda M et al (2003) Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci USA 100 11023-8 Kubista H, Boehm S (2006) Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 112 213 42 Kukulski F, Sevigny J, Komoszynski M (2004) Comparative hydrolysis of extracellular adenine nucleotides and adenosine in synaptic membranes from porcine brain cortex, hippocampus, cerebellum and medulla oblongata. Brain Res 1030 49-56 Kurokawa M, Koga K, Kase H et al (1996) Adenosine A2a receptor-mediated modulation of striatal acetylcholine release in vivo. J Neurochem 66 1882-8 Kurz K, von Ktigelgen I, Starke K (1993) Prejunctional modulation of noradrenaline release in mouse and rat vas deferens contribution of PI- and P2-purinoceptors. Br J Pharmacol 110 1465-72... [Pg.367]

Dawson LA, Nguyen HQ, Li P. In vivo effects of the 5-HT6 antagonist, SB-271046 on striatal and frontal cortex extracellular concentrations of noradrenaline, dopamine, 5-HT, glutamate and aspartate. Br J Pharmacol 2000 130 23-26. [Pg.510]

Tanda G, Pontieri FE, Frau R, Di Chiara G (1997) Contribution of blockade of the noradrenaline carrier to the increase of extracellular dopamine in the rat prefrontal cortex by amphetamine and cocaine. Eur J Neurosci 9 2077-2085. [Pg.391]

Amineptine is a tricyclic antidepressant that selectively reduces the dopamine reuptake without affecting the uptake of noradrenaline or serotonin (5-HT) (1). In vivo, it increases striatal homovanillic acid concentrations without affecting the concentrations of other metabolites of dopamine, 3,4,dihydroxyphenylacetic acid (DOPAC) and 3-methoxytyramine. However, high doses of amineptine reduced the extracellular DOPAC concentration in the nucleus accumbens but not in the striatum. Long-term treatment with amineptine causes down-regulation of beta-adrenoceptors. [Pg.29]


See other pages where Noradrenaline extracellular is mentioned: [Pg.246]    [Pg.1184]    [Pg.38]    [Pg.412]    [Pg.413]    [Pg.441]    [Pg.30]    [Pg.33]    [Pg.34]    [Pg.312]    [Pg.326]    [Pg.202]    [Pg.190]    [Pg.181]    [Pg.76]    [Pg.266]    [Pg.553]    [Pg.589]    [Pg.590]    [Pg.272]    [Pg.276]    [Pg.486]    [Pg.246]    [Pg.140]    [Pg.246]    [Pg.356]    [Pg.424]    [Pg.1184]    [Pg.116]   


SEARCH



© 2024 chempedia.info