Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonpolar methylene chloride-soluble

Nonpolar methylene chloride-soluble residues. Pentachloro-thloanisole and pentachlorothioanlsole sulfoxide were present in the nonpolar methylene chloride-soluble fraction from each of the plant systems examined (Figure 14). In addition, pentachloro-thiophenol was detected in some of these extracts. Pentachloro-thioanisole has been reported as an important residue of PCNB in almost every biological system that has been examined for PCNB metabolism and pentachlorothlophenol has also been reported as a residue in several of these systems S). The formation of these residues from S-(PCP)GSH via the pathway shown in Figure 16 was considered highly probable. Recent vivo studies indicated that such a system also operates in mammals in the metabolism of propachlor ( ) and pentachlorothioanlsole (20). vitro... [Pg.154]

Methylene chloride-soluble residues. Methylene chloride-or chloroform-soluble C-labeled products were major residues in all of the plant tissues examined except peanut cell ciiltures (Figure 3). Chloroform-soluble C accounted for 59.2 of the radioactivity isolated from peanut roots 48 hr after treatment with [ C]PCNB. The radioactivity was in the form of PCNB (28.7 ), pentachloroaniline (22.5 ), pentachlorothiophenol (2.6 ) pentachlorothloanlsole (3.1 ) pentachlorothloanlsole sulfoxide (0.5 ) S-(pentachlorophenyl)-2-thioaoetic acid [(S-(PCP)ThioAcetate] (0.5 ) and S-(pentachlorophenyl)-3-thio-2-hydroxypropionic acid [S-(PCP)ThioLactate] (0.2 ) and S-(PCP)Cys (trace) (J), The structures of these compounds are shown in Figure 13. Based on TLC, the last three compounds in this list were classified as polar chloroform- or methylene chloride-soluble residues and the remaining compounds were classified as nonpolar residues. [Pg.149]

Polyethers prepared from propylene oxide are soluble in most organic solvents. The products with the highest hydroxyl number (lowest molecular weight) are soluble in water, not in nonpolar solvents such as hexane. The solubihty of 3000 molecular weight triols is high enough in solvents such as toluene, hexane, and methylene chloride that the triols can be purified by a solvent extraction process. [Pg.354]

The most critical decision to be made is the choice of the best solvent to facilitate extraction of the drug residue while minimizing interference. A review of available solubility, logP, and pK /pKb data for the marker residue can become an important first step in the selection of the best extraction solvents to try. A selected list of solvents from the literature methods include individual solvents (n-hexane, " dichloromethane, ethyl acetate, acetone, acetonitrile, methanol, and water ) mixtures of solvents (dichloromethane-methanol-acetic acid, isooctane-ethyl acetate, methanol-water, and acetonitrile-water ), and aqueous buffer solutions (phosphate and sodium sulfate ). Hexane is a very nonpolar solvent and could be chosen as an extraction solvent if the analyte is also very nonpolar. For example, Serrano et al used n-hexane to extract the very nonpolar polychlorinated biphenyls (PCBs) from fat, liver, and kidney of whale. One advantage of using n-hexane as an extraction solvent for fat tissue is that the fat itself will be completely dissolved, but this will necessitate an additional cleanup step to remove the substantial fat matrix. The choice of chlorinated hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride should be avoided owing to safety and environmental concerns with these solvents. Diethyl ether and ethyl acetate are other relatively nonpolar solvents that are appropriate for extraction of nonpolar analytes. Diethyl ether or ethyl acetate may also be combined with hexane (or other hydrocarbon solvent) to create an extraction solvent that has a polarity intermediate between the two solvents. For example, Gerhardt et a/. used a combination of isooctane and ethyl acetate for the extraction of several ionophores from various animal tissues. [Pg.305]

Specific examples illustrate that similar principles affect the absorption spectra. For example, as we have pointed out above, the neutral form of the C-2 benzyl ester is red in MeOH and orange in methylene chloride. Thus it has the spectrum of the ionized form in the polar, protic solvent and of the nonionized form in the nonpolar solvent methylene chloride [248]. The tributyl ammonium salt of the C-2 octyl ester is soluble in solvents ranging from ethanol-water to toluene. Its spectrum in an essentially nonionizing solvent such as toluene is that of the ionized xanthene [249], The spectrum of the pyrillium salt in ethanol is concentration dependent. In dilute solution the compound is totally ionized and is red, whereas in concentrated solution the compound is not fully ionized and the orange form predominates, as predicted by the law of mass action. [Pg.356]

Effects of Substitution on Spectra Solvent Effects. Solvent effects on the absorption spectra can be summarized as follows if the compound is soluble in water, alcohols, and polar, protic solvents such as DMSO, DME, and DMF, the /.max is most red shifted in polar, nonprotic solvents. Compounds that are soluble in nonpolar solvents such as CH2C12 are generally not soluble in water, and their absorption lies at about the same place in both alcohols and methylene chloride, but is shifted to the red in polar, nonprotic solvents. The value of Amax also reflects the hydrogen bonding ability of the... [Pg.356]

Tetraalkylammonium tosylates [74] and trifluoromethanesulfonates [72] are also excellent electrolytes. Although tetraalkylammonium ions are favored as the cations for supporting electrolytes because of their wide potential range, other cations are sometimes used for special applications—for example, methyltri-phenyl phosphonium, whose tosylate is freely soluble in methylene chloride, and other fairly nonpolar solvents [74] or metal ions (lithium salts tend to have the best solubility in organic solvents) where undesirable reactions of the tetraalkylammonium ion might occur [13,75]. The properties of many electrolytes suitable for nonaqueous use have been surveyed [76]. [Pg.482]

Extraction of nonpolar compounds using equal volumes of sample and the Folsch mixture (2 1, chloroform/MeOH) gives a very broad polarity cut. Everything from steroids to triglycerides is pulled down into the bottom chloroform-rich layer. Extraction with methylene chloride from a sample acidified with sulfuric acid is more specific, pulling in steroids, fat-soluble vitamins, and free fatty acids. The triglyceride fraction can be extracted using i-PrOH/ hexane (1 9) with little emulsification. [Pg.145]

The physical properties of alkynes (Table 9-2) are similar to those of alkanes and alkenes of similar molecular weights. Alkynes are relatively nonpolar and nearly insoluble in water. They are quite soluble in most organic solvents, including acetone, ether, methylene chloride, chloroform, and alcohols. Many alkynes have characteristic, mildly offensive odors. Ethyne, propyne, and the butynes are gases at room temperature, just... [Pg.394]

The complexes (l,5-cyclooctadiene)(2,4-pentanedionato)-palladium(II) and platinum(II) tetrafluoroborate are air-stable solids, soluble in polar organic solvents such as chloroform, methylene chloride, acetonitrile, acetone, or methanol but insoluble in nonpolar solvents such as alkanes, benzene, or ether. Their solutions in acetone have conductivities typical of 1 1 electrolytes. Their proton magnetic resonance spectra (in CDC13 solutions, internal tetramethylsilane reference at 60 MHz.) show peaks due to coordinated cyclooctadiene at 3.78 and 6.7-7.4r (Pd) and at 4.25 and 6.9-7.6r (Pt) and due to the chelated /3-diketone at 4.39 and 7.88r (Pd) and at 4.15 and 7.81r (Pt) with the expected area ratios. In the spectrum of the platinum compound coupling with the 95Pt isotope (33 %... [Pg.58]

The HB/MtX -initiated polymerizations of vinyl ethers are typically carried out in nonpolar media such as toluene and n-hexane (depending on the solubility of the products) at temperatures below 0° C. In some cases, however, polar solvents (e.g., methylene chloride) may be used at appropriate initiator/activator mole ratios [119] and, specifically with the HI/ZnI2 system, controlled/living polymerization is feasible even at room temperature ( + 25° C) [98,99]. [Pg.308]

Solubility sol in both polar and nonpolar aprotic solvents like diethyl ether, THF, methylene chloride, pentane, hexane, etc. [Pg.193]

The most commonly used quaternary ammonium salts are tetrabutylammonium perchlorate (TBAP), tetrafluoroborate (TBAT), the halides (TBACl, TBAB, and TBAI), and the corresponding tetraethylammonium salts, such as the perchlorate (TEAP), but also the tetramethyl- or tetrapropylammonium salts have been employed the former cannot undergo a base-promoted Hofmann elimination. However, evidence has been found for the formation of trimethylammonium methylide [460]. In nonpolar solvents it may be necessary to employ tetrahexyl- or tetraoctylammonium salts. The tetraalkylammonium ions are soluble in many nonaqueous media, and they may be extracted from an aqueous solution by means of chloroform or methylene chloride [461,462], and tetraalkylammonium salts may thus be prepared by ion extraction [462]. Tetrakis(decyl)ammonium tetra-phenylborate is soluble even in hexane [442,443]. [Pg.275]

Fats, oils, and lipids are common components of meats, nuts, and dairy products and manufactured goods, such as potato chips, cookies, and chocolate. They are soluble in nonpolar solvents, such as hexane and methylene chloride. The analyte, of course, should also be soluble in the extraction solvent. Typically normal-phase SPE would be used to retain a compound from this extraction solvent. A solid fat may be homogenized in a blender with hexane, filtered or centrifuged, then the solvent would be passed through a normal-phase column for retention of the solute. Another approach is the use of matrix solid-phase dispersion, where the solid would be ground into the silica and C-18 directly, then the analyte eluted directly from the ground mixture with either hexane or methylene chloride. The hexane or methylene chloride extract could then be applied directly to a normal-phase sorbent for separation. Liquid oils may be directly diluted with hexane or methylene chloride and applied to the normal-phase sorbent. Other lipid substances may be handled either as solids or liquids depending on their form. [Pg.228]

It has been noted that reaction solvent choice is crucial to obtain good stereoselectivity in these cycloadditions. Nonpolar solvents, such as toluene, give inferior results, presumably because of low catalyst solubility, whereas polar solvents, such as nitromethane or acetonitrile, may coordinate to the ytterbium complex, generating an achiral catalytic species. Best results were obtained in carefully purified methylene chloride because any traces of alcohols in the solvent lower the levels of stereocontrol. [Pg.78]

The solubility of AHS in pure methanol was low, probably due to the relatively nonpolar acetoxy groups. For this reason a 1 1 mixture of methylene chloride and ethanol was used as solvent. In the deprotected form ofthehexasacchaiide, however, the acetoxy groups are substituted by hydroxyl groups, changing the solubility of the molecules drastically. Methanol was used as a solvent in this latter case. since the molecules were no longer soluble in the ethanol/ methylene chloride mixture. [Pg.21]

Extraction of the tea leaves directly with nonpolar solvents (methylene chloride) to remove the caffeine gives very poor results—since, as we have seen, the caffeine is bound in the plant in a partially ionic complex that wiU not be very soluble in nonpolar solvents. Thus, water is the superior extraction solvent for this alkaloid. The water also swells the tea leaves and allows for easier transport across the solid-liquid interface. [Pg.232]

Figures 1.14 and 1.15 show the gas chromatograms of pyrolysis products trapped in 0.01 N H2SO4 solution, for acrylic acid containing latex A and methacrylic acid containing latex B, respectively. In the latex A case (Figures 1.14, 1.15), the 0.01 N H2SO4 solution-trapped products revealed a significant reduction in complexity of peaks and the acrylic acid and methacrylic acid peaks are better resolved from other pyrolysis products. This is a direct result of the low solubility of the nonpolar pyrolysis products in the polar solution. In contrast, the methanol and methylene chloride-trapped products exhibit gas chromatograms of about the same complexity as direct Py-GC pyrograms. This indicates that the selection of 0.01 N H2-SO4 solution as the trapping solvent can properly separate the acrylic acid or methacrylic acid from an abundance of other components... Figures 1.14 and 1.15 show the gas chromatograms of pyrolysis products trapped in 0.01 N H2SO4 solution, for acrylic acid containing latex A and methacrylic acid containing latex B, respectively. In the latex A case (Figures 1.14, 1.15), the 0.01 N H2SO4 solution-trapped products revealed a significant reduction in complexity of peaks and the acrylic acid and methacrylic acid peaks are better resolved from other pyrolysis products. This is a direct result of the low solubility of the nonpolar pyrolysis products in the polar solution. In contrast, the methanol and methylene chloride-trapped products exhibit gas chromatograms of about the same complexity as direct Py-GC pyrograms. This indicates that the selection of 0.01 N H2-SO4 solution as the trapping solvent can properly separate the acrylic acid or methacrylic acid from an abundance of other components...

See other pages where Nonpolar methylene chloride-soluble is mentioned: [Pg.52]    [Pg.207]    [Pg.149]    [Pg.7]    [Pg.12]    [Pg.961]    [Pg.52]    [Pg.373]    [Pg.321]    [Pg.598]    [Pg.241]    [Pg.7604]    [Pg.68]    [Pg.143]    [Pg.507]    [Pg.99]    [Pg.889]   


SEARCH



Methylene chlorid

Methylene chloride

Methylene chloride, solubility

Nonpolar

Nonpolarized

Solubility chloride

© 2024 chempedia.info