Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen dioxide atmospheric oxidation

Chemical radicals—such as hydroxyl, peroxyhydroxyl, and various alkyl and aryl species—have either been observed in laboratory studies or have been postulated as photochemical reaction intermediates. Atmospheric photochemical reactions also result in the formation of finely divided suspended particles (secondary aerosols), which create atmospheric haze. Their chemical content is enriched with sulfates (from sulfur dioxide), nitrates (from nitrogen dioxide, nitric oxide, and peroxyacylnitrates), ammonium (from ammonia), chloride (from sea salt), water, and oxygenated, sulfiirated, and nitrated organic compounds (from chemical combination of ozone and oxygen with hydrocarbon, sulfur oxide, and nitrogen oxide fragments). ... [Pg.239]

Theory of the Action in the Gay-Lussac and Glover Towers.— The gases issuing from the chambers consist mainly of nitrogen dioxide, nitric oxide and atmospheric nitrogen. The two former are dissolved by the sulphuric acid in the Gay-Lussac tower with formation of a solution of nitrosylsulphuric acid in excess of sulphuric acid (see also below) ... [Pg.153]

Inorganic gases Oxides of nitrogen Oxides of sulfur Other inorganics Nitrogen dioxide, nitric oxide Sulfuric acid, sulfur dioxide Carbon monoxide, chlorine, ozone, hydrogen sulfide, hydrogen fluoride, ammonia One of the principal pollutants is sulfur dioxide, which is a corrosive acid gas that combines with water vapor in the atmosphere to produce acid rain. [Pg.11]

Other observations of the reaction of hydrazine and nitrogen tetroxide substantiate the production of non-equilibrium combustion products. Non-equilibrium product concentrations were found in combustion gases extracted from a small rocket combustion chamber through a molecular beam sampling device with direct mass spec-trometric analysis (31) (39). Under oxidizer rich conditions excessive amounts of nitric oxide were found under fuel rich conditions excessive amounts of ammonia were found. A correlation between the experimentally observed characteristic velocity and nitric oxide concentration exists (40). Related kinetic effects are postulated to account for the two stage flame observed in the burning of hydrazine droplets in nitrogen dioxide atmospheres (41) (42). [Pg.82]

The initial combustion product of nitrogen and oxygen is nitric oxide, which on further oxidation gradually turns into nitrogen dioxide. Atmospheric concen... [Pg.240]

At our level in the troposphere, air is a mixture of gases of uniform composition, except for water vapor, which composes l%-3% of the atmosphere by volume, and some of the trace gases, such as pollutant sulfur dioxide. On a dry basis, air is 78.1% (by volume) N2, 21.0% O2, 0.9% argon, and 0.04% carbon dioxide. Trace gases at levels below 0.002% in air include ammonia, carbon monoxide, helium, hydrogen, krypton, methane, neon, nitrogen dioxide, nitrous oxide, ozone, sulfur dioxide, and xenon. [Pg.159]

The oxidation of cyclohexanone by nitric acid leads to the generation of nitrogen dioxide, nitric oxide, and nitrous oxide. The first two gases can be recycled for the synthesis of nitric acid. This reduces the E factor of the overall oxidation process to some extent. Nitrous oxide, however, cannot be recycled. Furthermore, it is a greenhouse gas as well as an ozone depleter. It therefore cannot be emitted out in the atmosphere and must be removed. [Pg.245]

The Kestner-Johnson dissolver is widely used for the preparation of silver nitrate (11). In this process, silver bars are dissolved in 45% nitric acid in a pure oxygen atmosphere. Any nitric oxide, NO, produced is oxidized to nitrogen dioxide, NO2, which in turn reacts with water to form more nitric acid and nitric oxide. The nitric acid is then passed over a bed of granulated silver in the presence of oxygen. Most of the acid reacts. The resulting solution contains silver at ca 840 g/L (12). This solution can be further purified using charcoal (13), alumina (14), and ultraviolet radiation (15). [Pg.89]

The confinement of the cracks to a specific area of the cooler suggests that condensate from atmospheric moisture initially formed in this area and dissolved a corrodent from the atmosphere such as ammonia, sulfur dioxide, or oxides of nitrogen. Since the previous cooler had been in service for 20 years, it is conjectured that the rapid failure of this exchanger was due principally to very high bending stresses, which may have been induced during construction of the cooler. [Pg.214]

Nitric oxide, NO, results from high-temperature combustion, both in stationary sources such as power plants or industrial plants in the production of process heat and in internal combustion engines in vehicles. The NO is oxidized in the atmosphere, usually rather slowly, or more rapidly if there is ozone present, to nitrogen dioxide, NO2. NO2 also reacts further with other constituents, forming nitrates, which is also in fine parhculate form. [Pg.37]

Nitric oxide combines readily with atmospheric oxygen at ambient temperature to produce brown fumes of pungent nitrogen dioxide, and in the presence of charcoal with chlorine to form nitrosyl chloride ... [Pg.298]

The reaction velocity is comparatively slow, but increases with increasing concentration of acid. The addition of three drops of a neutral 20 per cent ammonium molybdate solution renders the reaction almost instantaneous, but as it also accelerates the atmospheric oxidation of the hydriodic acid, the titration is best conducted in an inert atmosphere (nitrogen or carbon dioxide). [Pg.395]

Nitrogen Dioxide (NO2) Is a major pollutant originating from natural and man-made sources. It has been estimated that a total of about 150 million tons of NOx are emitted to the atmosphere each year, of which about 50% results from man-made sources (21). In urban areas, man-made emissions dominate, producing elevated ambient levels. Worldwide, fossil-fuel combustion accounts for about 75% of man-made NOx emissions, which Is divided equally between stationary sources, such as power plants, and mobile sources. These high temperature combustion processes emit the primary pollutant nitric oxide (NO), which Is subsequently transformed to the secondary pollutant NO2 through photochemical oxidation. [Pg.174]

Nitrogen oxide reacts in the atmosphere with O2 to form nitrogen dioxide ... [Pg.331]

Commercially produced amines contain Impurities from synthesis, thus rigid specifications are necessary to avoid unwanted Impurities In final products. Modern-day analytical capability permits detection of minute quantities of Impurities In almost any compound. Detection In parts per million Is routine, parts per billion Is commonplace, and parts per trillion Is attainable. The significance of Impurities In products demands careful and realistic Interpretation. Nltrosatlng species, as well as natural amines, are ubiquitous In the environment. For example, Bassow (1976) cites that about 50 ppb of nitrous oxide and nitrogen dioxide are present In the atmosphere of the cities. Microorganisms In soil and natural water convert ammonia to nitrite. With the potential for nitrosamine formation almost ever-present In the envlronmeit, other approaches to prevention should Include the use of appropriate scavengers as additives In raw materials and finished products. [Pg.371]

The purify of the water changes constantly during the water cycle. As rain falls through the air, for example, the water dissolves some atmospheric gases such as oxygen, carbon dioxide, and in industrial regions also such air pollutants as sulfur dioxide and oxides of nitrogen. Still more carbon dioxide... [Pg.442]


See other pages where Nitrogen dioxide atmospheric oxidation is mentioned: [Pg.111]    [Pg.3]    [Pg.196]    [Pg.111]    [Pg.292]    [Pg.3]    [Pg.78]    [Pg.322]    [Pg.41]    [Pg.66]    [Pg.199]    [Pg.381]    [Pg.2338]    [Pg.30]    [Pg.12]    [Pg.22]    [Pg.23]    [Pg.275]    [Pg.274]    [Pg.867]    [Pg.89]    [Pg.89]    [Pg.688]    [Pg.65]    [Pg.323]    [Pg.205]    [Pg.181]    [Pg.353]    [Pg.1]    [Pg.434]    [Pg.1749]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Atmosphere dioxide)

Atmosphere oxidation

Atmospheres oxidative

Atmospheric oxidants

Atmospheric oxidation

Nitrogen dioxid

Nitrogen dioxide

Nitrogen dioxide oxides

Nitrogen oxides atmospheric

Oxides dioxides

© 2024 chempedia.info