Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrogen cyanides

Calcium cyanide Nitrogen cyanide removal Hydrogen peroxide cyanide salt mfg. [Pg.5051]

Hazardous Decomp. Prods. CO, COj, toxic oxides of nitrogen/cyanide HMiS Heaith 1, Fiammabiiity 0, Reactivity 1... [Pg.803]

It is essential to use an excess of sodium, otherwise if sulphur and nitrogen are both present sodium thiocyanate, NaCNS, may be produced in the test for nitrogen it may give a red coloration with ferric iron but no Prussian blue since there will be no free cyanide ions. With excess of sodium the thiocyanate, if formed, will be decomposed ... [Pg.1039]

Nitrogen and sulphur present. Just acidify 2-3 ml. of the fusion solution with dilute nitric acid, and evaporate to half the original volume in order to expel hydrogen cyanide and/or hydrogen sulphide which may be present. Dilute with an equal volume of water. If only one halogen is present, proceed as in tests (i) or (iii). If one or more halogens may be present, use tests (ii), (iii) or (iv). [Pg.1042]

When an organic compound is heated with a mixture of zinc powder and sodium carbonate, the nitrogen and halogens are converted into sodium cyanide and sodium hahdes respectively, and the sulphur into zinc sulphide (insoluble in water). The sodium cyanide and sodium hahdes are extracted with water and detected as in Lassaigne s method, whilst the zinc sulphide in the residue is decomposed with dilute acid and the hydrogen sulphide is identified with sodium plumbite or lead acetate paper. The test for nitrogen is thus not affected by the presence of sulphur this constitutes an advantage of the method. [Pg.1044]

Lewis s concept of shared electron parr bonds allows for four electron double bonds and SIX electron triple bonds Carbon dioxide (CO2) has two carbon-oxygen double bonds and the octet rule is satisfied for both carbon and oxygen Similarly the most stable Lewis structure for hydrogen cyanide (HCN) has a carbon-nitrogen triple bond... [Pg.14]

Reactions that employ copper(I) salts as reagents for replacement of nitrogen m diazo mum salts are called Sandmeyer reactions The Sandmeyer reaction using copper(I) cyanide is a good method for the preparation of aromatic nitriles... [Pg.948]

Acrylonitrile is combustible and ignites readily, producing toxic combustion products such as hydrogen cyanide, nitrogen oxides, and carbon monoxide. It forms explosive mixtures with air and must be handled in weU-ventilated areas and kept away from any source of ignition, since the vapor can spread to distant ignition sources and flash back. [Pg.185]

Thousands of compounds of the actinide elements have been prepared, and the properties of some of the important binary compounds are summarized in Table 8 (13,17,18,22). The binary compounds with carbon, boron, nitrogen, siUcon, and sulfur are not included these are of interest, however, because of their stabiUty at high temperatures. A large number of ternary compounds, including numerous oxyhaUdes, and more compHcated compounds have been synthesized and characterized. These include many intermediate (nonstoichiometric) oxides, and besides the nitrates, sulfates, peroxides, and carbonates, compounds such as phosphates, arsenates, cyanides, cyanates, thiocyanates, selenocyanates, sulfites, selenates, selenites, teUurates, tellurites, selenides, and teUurides. [Pg.221]

Hexa.cya.no Complexes. Ferrocyanide [13408-63 ] (hexakiscyanoferrate-(4—)), (Fe(CN) ) , is formed by reaction of iron(II) salts with excess aqueous cyanide. The reaction results in the release of 360 kJ/mol (86 kcal/mol) of heat. The thermodynamic stabiUty of the anion accounts for the success of the original method of synthesis, fusing nitrogenous animal residues (blood, horn, hides, etc) with iron and potassium carbonate. Chemical or electrolytic oxidation of the complex ion affords ferricyanide [13408-62-3] (hexakiscyanoferrate(3—)), [Fe(CN)g] , which has a formation constant that is larger by a factor of 10. However, hexakiscyanoferrate(3—) caimot be prepared by direct reaction of iron(III) and cyanide because significant amounts of iron(III) hydroxide also form. Hexacyanoferrate(4—) is quite inert and is nontoxic. In contrast, hexacyanoferrate(3—) is toxic because it is more labile and cyanide dissociates readily. Both complexes Hberate HCN upon addition of acids. [Pg.434]

Liquid Nitriding. As in gas nitriding, the process is carried out below the austenite region, and hardening is associated with the formation of hard nitrides in the ferrite. Liquid cyanide salts are used with others to provide the source of nitrogen. [Pg.217]

Unpiotonated hydioxylamine is oxidized rapidly by ozone, / = 2.1 X 10 (39). The reaction of ozone with the lower oxides of nitrogen (NO and NO2) is also rapid and quantitative the end product is nitrogen pentoxide, which is also a catalyst for the decomposition of ozone (45). Nitrous oxide, however, reacts slowly (k < 10 ) (39). Nitrogen-containing anions, eg, nitrite and cyanide, also ate oxidized by ozone (39). Nitrite is oxidized to nitrate (fc = 3.7 X 10 and cyanide is oxidized rapidly to cyanate (fc = 2.6 X 10 (46) and 10 -10 (39)). Cyanate, however, is oxidized slowly. [Pg.492]

Ritter Reaction (Method 4). A small but important class of amines are manufactured by the Ritter reaction. These are the amines in which the nitrogen atom is adjacent to a tertiary alkyl group. In the Ritter reaction a substituted olefin such as isobutylene reacts with hydrogen cyanide under acidic conditions (12). The resulting formamide is then hydroly2ed to the parent primary amine. Typically sulfuric acid is used in this transformation of an olefin to an amine. Stoichiometric quantities of sulfate salts are produced along with the desired amine. [Pg.200]

Nitriles. Nitriles can be prepared by a number of methods, including ( /) the reaction of alkyl haHdes with alkaH metal cyanides, (2) addition of hydrogen cyanide to a carbon—carbon, carbon—oxygen, or carbon—nitrogen multiple bond, (2) reaction of hydrogen cyanide with a carboxyHc acid over a dehydration catalyst, and (4) ammoxidation of hydrocarbons containing an activated methyl group. For reviews on the preparation of nitriles see references 14 and 15. [Pg.258]

Both urea— and melamine—formaldehyde resins are of low toxicity. In the uncured state, the amino resin contains some free formaldehyde that could be objectionable. However, uncured resins have a very unpleasant taste that would discourage ingestion of more than trace amounts. The molded plastic, or the cured resin on textiles or paper may be considered nontoxic. Combustion or thermal decomposition of the cured resins can evolve toxic gases, such as formaldehyde, hydrogen cyanide, and oxides of nitrogen. [Pg.333]


See other pages where Nitrogen cyanides is mentioned: [Pg.48]    [Pg.49]    [Pg.208]    [Pg.14]    [Pg.1410]    [Pg.806]    [Pg.48]    [Pg.49]    [Pg.208]    [Pg.14]    [Pg.1410]    [Pg.806]    [Pg.265]    [Pg.277]    [Pg.351]    [Pg.403]    [Pg.191]    [Pg.321]    [Pg.324]    [Pg.324]    [Pg.326]    [Pg.767]    [Pg.1041]    [Pg.18]    [Pg.121]    [Pg.31]    [Pg.36]    [Pg.36]    [Pg.62]    [Pg.75]    [Pg.386]    [Pg.434]    [Pg.136]    [Pg.217]    [Pg.217]    [Pg.387]    [Pg.43]    [Pg.54]    [Pg.74]    [Pg.95]    [Pg.218]    [Pg.359]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



Cyanides and Other Carbon-Nitrogen Compounds

Cyanides from atmospheric nitrogen

Metal cyanides nitrogen nucleophiles

© 2024 chempedia.info