Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles, preparation from acids

Ortho esters are one of the few derivatives that can be prepared from acids and esters that protect the carbonyl against nucleophilic attack by hydroxide or other strong nucleophiles such as Grignard reagents. In general, ortho esters are difficult to prepare directly from acids and are therefore more often prepared from the nitrile. Simple ortho esters derived from normal alcohols are the least stable in terms of acid stability and stability toward Grignard reagents, but as the ortho ester becomes more constrained, its stability increases. [Pg.437]

Amines are at the same low oxidation level as alcohols and consequently are easily prepared by reduction. Amides and nitriles are reduced efficiently by LAH to amines. Nitriles give only primary amines while amides give 1°, 2°, or 3° amines depending on the number of carbon substituents on the amide nitrogen. The advantage of this method is that amides are easy to prepare from acid chlorides and amines while nitriles are available by displacement reactions. [Pg.202]

Nitriles are considered carboxylic acid derivatives because they are often prepared from acids through the primary amides. Show how you would convert the following carboxylic acids to nitriles. [Pg.1025]

The reaction conditions required for acid-catalyzed hydrolysis of a cyano group are typically more vigorous than those required for hydrolysis of an amide, and in the presence of excess water, a cyano group is hydrolyzed first to an amide and then to a carboxylic acid. It is possible to stop at the amide by using sulfuric acid as a catalyst and one mole of water per mole of nitrile. Selective hydrolysis of a nitrile to an amide, however, is not a good method for the preparation of amides. They are better prepared from acid chlorides, acid anhydrides, or esters. [Pg.758]

Nitriles and simple amides differ in physical properties the former are liquids or low-melting Solids, whilst the latter are generally solids. If the amide is a solid and insoluble in water, it may be readily prepared from the nitrile by dissolving in concentrated sulphuric acid and pouring the solution into water ... [Pg.1075]

Ketenimines are usually prepared from carboxyHc acid derivatives such as amides and imino chlorides via elimination and from nitriles via alkylation with alkyl haHdes under strong basic conditions (21,64). [Pg.476]

A/-(4-Hydroxyphenyl)glycine can be prepared from 4-aminophenol and chloracetic acid (199,200) or by alkaline hydrolysis of the corresponding nitrile with subsequent elimination of ammonia (201). [Pg.316]

Organic Acids and Their Derivatives (Anhydrides, Nitriles, Ureas). Alkyleneamines react with acids, esters, acid anhydrides or acyl hahdes to form amidoamines and polyamides. Various diamides of EDA are prepared from the appropriate methyl ester or acid at moderate temperatures (25,26). [Pg.42]

Third Monomers. In order to achieve certain property improvements, nitrile mbber producers add a third monomer to the emulsion polymerization process. When methacrylic acid is added to the polymer stmcture, a carboxylated nitrile mbber with greatly enhanced abrasion properties is achieved (9). Carboxylated nitrile mbber carries the ASTM designation of XNBR. Cross-linking monomers, eg, divinylbenzene or ethylene glycol dimethacrylate, produce precross-linked mbbers with low nerve and die swell. To avoid extraction losses of antioxidant as a result of contact with fluids duriag service, grades of NBR are available that have utilized a special third monomer that contains an antioxidant moiety (10). FiaaHy, terpolymers prepared from 1,3-butadiene, acrylonitrile, and isoprene are also commercially available. [Pg.522]

Pyridazinecarboxamides are prepared from the corresponding esters or acid chlorides with ammonia or amines or by partial hydrolysis of cyanopyridazines. Pyridazinecarboxamides with a variety of substituents are easily dehydrated to nitriles with phosphorus oxychloride and are converted into the corresponding acids by acid or alkaline hydrolysis. They undergo Hofmann degradation to give the corresponding amines, while in the case of two ortho carboxamide groups pyrimidopyridazines are formed. [Pg.33]

This method is an adaptation of that of Dengel. -Methoxy-phenylacetonitrile can also be prepared by the metathetical reaction of anisyl chloride with alkali cyanides in a variety of aqueous solvent mixtures by the nitration of phenylaceto-nitrile, followed by reduction, diazotization, hydrolysis, and methylation 1 by the reduction of ct-benzoxy- -methoxy-phenylacetonitrile (prepared from anisaldehyde, sodium cyanide, and benzoyl chloride) and by the reaction of acetic anhydride with the oxime of -methoxyphenylpyruvic acid. ... [Pg.52]

Section 19.12 Nitriles, which can be prepared from primary and secondary alkyl halides by nucleophilic substitution with cyanide ion, can be converted to carboxylic acids by hydrolysis. [Pg.822]

The ketoxime derivatives, required as starting materials, can be prepared from the appropriate aromatic, aliphatic or heterocyclic ketone. Aldoximes (where R is H) do not undergo the rearrangement reaction, but rather an elimination of toluenesulfonic acid to yield a nitrile. With ketoxime tosylates a Beckmann rearrangement may be observed as a side-reaction. [Pg.209]

A thioamide of isonicotinic acid has also shown tuberculostatic activity in the clinic. The additional substitution on the pyridine ring precludes its preparation from simple starting materials. Reaction of ethyl methyl ketone with ethyl oxalate leads to the ester-diketone, 12 (shown as its enol). Condensation of this with cyanoacetamide gives the substituted pyridone, 13, which contains both the ethyl and carboxyl groups in the desired position. The nitrile group is then excised by means of decarboxylative hydrolysis. Treatment of the pyridone (14) with phosphorus oxychloride converts that compound (after exposure to ethanol to take the acid chloride to the ester) to the chloro-pyridine, 15. The halogen is then removed by catalytic reduction (16). The ester at the 4 position is converted to the desired functionality by successive conversion to the amide (17), dehydration to the nitrile (18), and finally addition of hydrogen sulfide. There is thus obtained ethionamide (19)... [Pg.255]

In order to establish the primary character of farnesol, farnesenic acid was prepared from farnesal oxime and the corresponding nitrile. Saponification of the farnesene-nitrile with caustic soda solution yields farnesenic acid and acetic acid, and also a ketone which was identified as a dihydropsewdoionone. The semi-carbazone melts between 95° and 96°. The dihydropmtdoionone from farnesene nitrile proved to be... [Pg.124]

The methionine nitrile (20 g) is dissolved in a solution prepared from 50 ml of aqueous 5N sodium hydroxide solution and 65 ml of ethanol. The solution is then refluxed for 24 hours ammonia is evolved. The solution is treated with activated carbon, filtered, acidified with glacial acetic acid (17 ml), chilled to -10°C and filtered to give crude product. This crude product is then slurried with a solution made up of 20 ml of water and 20 ml of methanol, filtered at -5° to -H0°C and dried to give dl-methionine as white platelets. [Pg.977]

The above keto-nitrile (15 grams) was methylated with a solution of diazomethane in ether. (The diazomethane solution was prepared using 20 grams of N-nitrosomethylurea.) The ether and excess diazomethane were evaporated on the steam bath and the oil dissolved in ethanol (50 ml). To this was added a solution of guanidine in ethanol (100 ml) (prepared from 8.1 grams of the hydrochloride). The solution was refluxed for 5 hours, the alcohol removed and the residue treated with 5N sodium hydroxide. The insoluble material was then filtered. After purification by precipitation from dilute acetic acid with sodium hydroxide and by recrystallization from ethanol the product formed clear colorless needles (8.0 grams), MP 218°-220°C as described in U.S. Patent 2,602,794. [Pg.1335]

Carboxylic acids can be prepared from nitriles by reaction with hot aqueous acid or base by a mechanism that we ll see in Section 20.9. Since nitriles themselves are usually made by Sts 2 reaction of a primary or secondary7 alkyl halide with CN , the two-step sequence of cyanide displacement followed by nitiile hydrolysis is a good way to make a carboxylic acid from an alkyl halide (RBr —> RC=N RC02H). [Pg.762]

The following carboxylic acid can t be prepared from an alkyl halide by either the nitrile hydrolysis route or the Grignard carboxylation route. Explain. [Pg.777]

Similar treatment of an arenediazonium salt with CuCN yields the nitrile, ArCN, which can then be further converted into other functional groups such as carboxyl, for example, Sandmeyer reaction of o-methylbenzenediazonium bisulfate with CuCN yields o-methylbenzonitrile, which can be hydrolyzed to give o-methylbenzoic acid. This product can t be prepared from o-xvlene by the usual side-chain oxidation route because both methyl groups would be oxidized. [Pg.942]

Arylamines are converted by diazotization with nitrous acid into arenediazonium salts, ArN2+ X-. The diazonio group can then be replaced by many other substituents in the Sandmeyer reaction to give a wide variety of substituted aromatic compounds. Aryl chlorides, bromides, iodides, and nitriles can be prepared from arenediazonium salts, as can arenes and phenols. In addition to their reactivity toward substitution reactions, diazonium salts undergo coupling with phenols and arylamines to give brightly colored azo dyes. [Pg.958]

It is also possible to prepare them from amino acids by the self-condensation reaction (3.12). The PAs (AABB) can be prepared from diamines and diacids by hydrolytic polymerization [see (3.12)]. The polyamides can also be prepared from other starting materials, such as esters, acid chlorides, isocyanates, silylated amines, and nitrils. The reactive acid chlorides are employed in the synthesis of wholly aromatic polyamides, such as poly(p-phenyleneterephthalamide) in (3.4). The molecular weight distribution (Mw/Mn) of these polymers follows the classical theory of molecular weight distribution and is nearly always in the region of 2. In some cases, such as PA-6,6, chain branching can take place and then the Mw/Mn ratio is higher. [Pg.150]

The alkylation of activated halogen compounds is one of several reactions of trialkylboranes developed by Brown (see also 15-16,15-25,18-31-18-40, etc.). These compounds are extremely versatile and can be used for the preparation of many types of compounds. In this reaction, for example, an alkene (through the BR3 prepared from it) can be coupled to a ketone, a nitrile, a carboxylic ester, or a sulfonyl derivative. Note that this is still another indirect way to alkylate a ketone (see 10-105) or a carboxylic acid (see 10-106), and provides an additional alternative to the malonic ester and acetoacetic ester syntheses (10-104). [Pg.560]

The addition of dry HCl to a mixture of a nitrile and an alcohol in the absence of water leads to the hydrochloride salt of an imino ester (imino esters are also called imidates and imino ethers). This reaction is called the Pinner synthesisThe salt can be converted to the free imino ester by treatment with a weak base such as sodium bicarbonate, or it can be hydrolyzed with water and an acid catalyst to the corresponding carboxylic ester. If the latter is desired, water may be present from the beginning, in which case aqueous HCl can be used and the need for gaseous HCl is eliminated. Imino esters can also be prepared from nitriles with basic catalysts. ... [Pg.1183]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

Nitrilium salts, e.g., 66, prepared from the alkylation of nitriles, react with sodium azide to yield 1,5-disubstituted tetrazoles, e.g., 67 (Scheme 7).121 The Schmidt reaction,122 a versatile method for the preparation of 1,5-disubstituted tetrazoles from ketones and hydrazoic acid, can now be regarded as a special case of azide addition to nitrilium salts.123... [Pg.223]

Reaction of 3-formyM/7-pyrido[ 1,2- ]pyrimidin-l-ones with hydroxylamine O-sulfonic acid at 5 °C, then 50 °C yielded 3-nitriles <2003T4113>. Treatment of 2-hydroxy-3-(dimethylamono)methyF4//-pyrido[l,2- ]pyrimidin-4-one with Mel, then with KCN gave the 3-cyanomethyl derivative <2004MI215>. A condensation product was obtained from 5-amino-l-ethyl-6-hydroxy-l,3-dihydrobenzimidazol-2-one and 3-lbrmyl-2-hydroxyA//-pyndo[ 1,2- ]pynmidin-l-one <2002W002/38549>. l-(2-Aminopyrimidin-4-yl)-8-phenyl-l,2,3,4-tetrahydro-6//-pyrido[l,2- ]pyrimidin-6-ones were prepared from l-(2-methylthiopyrimidin l-yl)-8-phenyl-l,2,3,4-tetrahydro-6//-pyrido[l,2- ]pyrimidin-6-one by treatment with MCPBA, and then with aralkylamines <2005W005/070932>. [Pg.175]


See other pages where Nitriles, preparation from acids is mentioned: [Pg.993]    [Pg.171]    [Pg.314]    [Pg.22]    [Pg.311]    [Pg.217]    [Pg.218]    [Pg.48]    [Pg.418]    [Pg.130]    [Pg.280]    [Pg.95]    [Pg.144]    [Pg.566]    [Pg.1027]    [Pg.395]    [Pg.163]    [Pg.223]    [Pg.179]    [Pg.83]    [Pg.7]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Acids, from nitriles

From nitriles

Nitriles acidity

Nitriles preparation

Nitriles, preparation from

Preparation carboxylic acids from nitriles

Preparation of Nitriles from Carboxylic Acid(Derivative)s

© 2024 chempedia.info