Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical properties nitriles

The physical properties of a number of aliphatic nitriles (cyanides) are given in Table 111,115. [Pg.411]

The physical properties of some typical aromatic nitriles are collected in Table IV, 195. [Pg.805]

Nitriles and simple amides differ in physical properties the former are liquids or low-melting Solids, whilst the latter are generally solids. If the amide is a solid and insoluble in water, it may be readily prepared from the nitrile by dissolving in concentrated sulphuric acid and pouring the solution into water ... [Pg.1075]

The physical properties of cyanoacetic acid [372-09-8] and two of its ester derivatives are Hsted ia Table 11 (82). The parent acid is a strong organic acid with a dissociation constant at 25°C of 3.36 x 10. It is prepared by the reaction of chloroacetic acid with sodium cyanide. It is hygroscopic and highly soluble ia alcohols and diethyl ether but iasoluble ia both aromatic and aUphatic hydrocarbons. It undergoes typical nitrile and acid reactions but the presence of the nitrile and the carboxyUc acid on the same carbon cause the hydrogens on C-2 to be readily replaced. The resulting malonic acid derivative decarboxylates to a substituted acrylonitrile ... [Pg.225]

Some of the physical properties of fatty acid nitriles are Hsted in Table 14 (see also Carboxylic acids). Eatty acid nitriles are produced as intermediates for a large variety of amines and amides. Estimated U.S. production capacity (1980) was >140, 000 t/yr. Eatty acid nitriles are produced from the corresponding acids by a catalytic reaction with ammonia in the Hquid phase. They have Httie use other than as intermediates but could have some utility as surfactants (qv), mst inhibitors, and plastici2ers (qv). [Pg.226]

Table 14. Some Physical Properties of Fatty Acid Nitriles... Table 14. Some Physical Properties of Fatty Acid Nitriles...
Physical properties for naphthalene mono-, di-, tri-, and tetracarboxyhc acids are summari2ed in Table 9. Most of the naphthalene di- or polycarboxyLic acids have been made by simple routes such as the oxidation of the appropriate dior polymethylnaphthalenes, or by complex routes, eg, the Sandmeyer reaction of the selected antinonaphthalenesulfonic acid, to give a cyanonaphthalenesulfonic acid followed by fusion of the latter with an alkah cyanide, with simultaneous or subsequent hydrolysis of the nitrile groups. [Pg.500]

Table 3 gives the corresponding physical properties of some commercially important substituted pyridines having halogen, carboxyHc acid, ester, carboxamide, nitrile, carbiaol, aminomethyl, amino, thiol, and hydroxyl substituents. [Pg.323]

Nittile mbber is much like SBR in its physical properties. It can be compounded for physical strength and abrasion resistance using traditional fillers such as carbon black, siUca, and reinforcing clays. The primary benefit of the polymer is its oil and solvent resistance. At a medium ACN content of 34% the swell in IRM 903 oil at 70°C is typically 25—30%. Nitrile mbber processes on conventional mbber equipment and can be compression, transfer, or injection molded. It can also be extmded easily. [Pg.232]

Nitrile rubber (NBR) was first commercialized by I.G. Farbindustry, Germany, in 1937, under the trade name of Buna N. Its excellent balance of properties confers it an important position in the elastomer series. Nitrile rubber, a copolymer of butadiene and acrylonitrile, is widely used as an oil-resistant rubber. The acrylonitrile content decides the ultimate properties of the elastomer. In spite of possessing a favorable combination of physical properties, there has been a continuous demand to improve the aging resistance of NBR due to the tougher requirements of industrial and automotive applications. [Pg.555]

This chapter mainly aims at describing the various methods and processes developed for hydrogenation of nitrile rubber. The characterization, physical properties, and application of hydrogenated nitrile rubber are also discussed. Another small section on hydroformylation of nitrile rubber has been included. [Pg.556]

Our studies of the absorption, permeation, and extraction properties of containers produced from high nitrile barrier resins have demonstrated that they meet or surpass the basic criteria established for retention of taste and odor characteristics of carbonated soft drinks. Sensory tests, which can isolate and identify end results as well as integrate collective effects, have confirmed this judgement and have established the general compatibility of these containers with a variety of beverage products from a taste and odor standpoint. Furthermore, these materials have the excellent physical properties required for containers which will find wide use in food and beverage packaging. [Pg.82]

Composite Particles, Inc. reported the use of surface-modified rubber particles in formulations of thermoset systems, such as polyurethanes, polysulfides, and epoxies [95], The surface of the mbber was oxidized by a proprietary gas atmosphere, which leads to the formation of polar functional groups like —COOH and —OH, which in turn enhanced the dispersibility and bonding characteristics of mbber particles to other polar polymers. A composite containing 15% treated mbber particles per 85% polyurethane has physical properties similar to those of the pure polyurethane. Inclusion of surface-modified waste mbber in polyurethane matrix increases the coefficient of friction. This finds application in polyurethane tires and shoe soles. The treated mbber particles enhance the flexibility and impact resistance of polyester-based constmction materials [95]. Inclusion of treated waste mbber along with carboxyl terminated nitrile mbber (CTBN) in epoxy formulations increases the fracture toughness of the epoxy resins [96]. [Pg.1055]

The carboxylated types (XNBR) contain one, or more, acrylic type of acid as a terpolymer, the resultant chain being similar to nitrile except for the presence of carboxyl groups which occur about every 100 to 200 carbon atoms. This modification gives the polymer vastly improved abrasion resistance, higher hardness, higher tensile and tear strength, better low temperature brittleness, and better retention of physical properties after hot-oil and air ageing when compared to ordinary nitrile rubber. [Pg.89]

Most nitrile oxides are unstable, some of them are explosive. This fact hinders the study of their physical properties. Nevertheless, there are a number of publications concerning not only stable but also unstable nitrile oxides. In particular, mass spectral data for nitrile oxides among other unstable compounds containing an N+-X bond are summarized in a review (9). In such studies, the molecular ions must be generated using indirect procedures, including dissociative electron ionization, online flash-vacuum pyrolysis mass spectrometry, or ion-molecular reactions. Their characterization is mainly based on collisional activation and ion-molecular reactions. [Pg.1]

Isomorphic monomers, 19 762 Isoniazid, 25 798 Isonicotinic hydrazide, 21 103 Isonitrile complexes, platinum, 19 656 Isonitrile-nitrile rearrangement, 21 149 Isononanoic acid, physical properties, 5 35t Isononyl alcohol, properties of commercial, 2 12t... [Pg.496]

Propen-l-ol. See Allyl alcohol 2-Propenal. See Acrolein 2-Propenamide. See Acrylamide Propene, copolymerizations of, 16 111 Propene homopolymerization, 16 104-110 Propene polymerization, 16 94, 99 2-Propenenitrile. See Acrylonitrile (AN) Propenoic acid, physical properties, 5 31t Propenoic acid nitrile. See Acrylonitrile (AN)... [Pg.766]

Little is known as yet of the chemistry of the monocyclic 1,2,3-triazines. The only reactions that have been reported are hydrolysis to substituted butane-1,3-diones, photolytic decomposition to acetylenes, nitriles, and nitrogen, and high temperature (250°) thermolysis, which leads to loss of nitrogen and formation of the corresponding diarylindenone imines. The structures of the latter compounds were confirmed on the basis of their physical properties and by hydrolysis to the corresponding known diarylindenones. ... [Pg.218]


See other pages where Physical properties nitriles is mentioned: [Pg.1026]    [Pg.272]    [Pg.517]    [Pg.520]    [Pg.559]    [Pg.565]    [Pg.565]    [Pg.570]    [Pg.573]    [Pg.68]    [Pg.199]    [Pg.367]    [Pg.464]    [Pg.1026]    [Pg.268]    [Pg.548]    [Pg.11]    [Pg.606]    [Pg.615]    [Pg.45]    [Pg.142]    [Pg.272]    [Pg.1026]   
See also in sourсe #XX -- [ Pg.834 ]

See also in sourсe #XX -- [ Pg.834 ]




SEARCH



Nitrile rubber physical properties

© 2024 chempedia.info