Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butanes, 2-substituted

Two different alkyl halides are obtained from the monochlorination of butane. Substitution of a hydrogen bonded to one of the terminal carbons produces 1-chlorobutane, whereas substitution of a hydrogen bonded to one of the internal carbons forms 2-chlorobutane. [Pg.340]

Methane ethane and cyclobutane share the common feature that each one can give only a single monochloro derivative All the hydrogens of cyclobutane for example are equivalent and substitution of any one gives the same product as substitution of any other Chlorination of alkanes m which the hydrogens are not all equivalent is more com plicated m that a mixture of every possible monochloro derivative is formed as the chlo rmation of butane illustrates... [Pg.175]

Addition to double bonds is not the only kind of reaction that converts an achiral molecule to a chiral one Other possibilities include substitution reactions such as the formation of 2 chlorobutane by free radical chlorination of butane Here again the prod uct IS chiral but racemic... [Pg.298]

In 1987 nonmotor fuel uses of butanes represented ca 16% of the total consumption. Liquid petroleum gas (LPG) is a mixture of butane and propane, typically in a ratio of 60 40 butane—propane however, the butane content can vary from 100 to 50% and less (see Liquefied petroleum gas). LPG is consumed as fuel in engines and in home, commercial, and industrial appHcations. Increasing amounts of LPG and butanes are used as feedstocks for substitute natural gas (SNG) plants (see Fuels, synthetic). / -Butane, propane, and isobutane are used alone or in mixture as hydrocarbon propellents in aerosols (qv). [Pg.403]

There are direct substitutions of possible interest that would not be feasible without drastic changes in the feed system or pressure. Thus if the available substitute for natural gas is, eg, a manufactured gas containing much CO, there would almost always be a mismatch of the WIs unless the fuel could be further modified by mixing with some other gaseous fuel of high volumetric heating value (propane, butane, vaporized fuel oil, etc). Moreover, if there are substantial differences in eg, as a result of the presence of considerable H2 as well as CO in the substitute gas, the variation in dame height and dashback tendency can also make the substitution unsatisfactory for some purposes, even if the WI is reproduced. Refinements and additional criteria are occasionally appHed to measure these and other effects in more complex substitution problems (10,85). [Pg.524]

The unit of the veloeity eonstant k is see Many reaetions follow first order kineties or pseudo-first order kineties over eertain ranges of experimental eonditions. Examples are the eraeking of butane, many pyrolysis reaetions, the deeomposition of nitrogen pentoxide (NjOj), and the radioaetive disintegration of unstable nuelei. Instead of the veloeity eonstant, a quantity referred to as the half-life iyj is often used. The half-life is the time required for the eoneentration of the reaetant to drop to one-half of its initial value. Substitution of the appropriate numerieal values into Equation 3-33 gives... [Pg.120]

H2Sil2, CDCI3, —42°, 1-10 min, 100% yield. Aromatic ketals are cleaved faster than the corresponding aliphatic derivatives, and cyclic ketals are cleaved more slowly than the acyclic analogues, such as dimethyl ketals. Substituted ketals such as those derived from butane-2,3-diol, which react only slowly with Mc3SiI, can also be cleaved with H2Sil2. If the reaction is run at 22°, ketals and acetals are reduced to iodides in excellent yield. [Pg.319]

Synthesis and chemistry of substituted l-azabicyclo[1.1.0]butanes 97SL1029. Synthesis of aziridines via stereoselective reactions with imines 99PAC1033. [Pg.243]

Propane is a more reactive paraffin than ethane and methane. This is due to the presence of two secondary hydrogens that could be easily substituted (Chapter 6). Propane is obtained from natural gas liquids or from refinery gas streams. Liquefied petroleum gas (LPG) is a mixture of propane and butane and is mainly used as a fuel. The heating value of propane is 2,300 Btu/ft. LPG is currently an important feedstock for the production of olefins for petrochemical use. [Pg.31]

The chemistry of n-butane is more varied than that of propane, partly because n-butane has four secondary hydrogen atoms available for substitution and three carbon-carbon bonds that can be cracked at high temperatures ... [Pg.175]

Increased substitution around a bond leads to increased strain. Take the four substituted butanes listed below, for example. For each compound, sight along the C2-C3 bond and draw Newman projections of the most stable and least stable conformations. Use the data in Table 3.5 to assign strain energy values to each conformation. Which of the eight conformations is most strained Which is least strained ... [Pg.105]

Due to its commercial importance, the synthesis of copper phthalocyanine (PcCu) is the best investigated of all the phthalocyanines. Copper phthalocyanine is prepared from phthalonitrile and copper(I) chloride without solvent137 and also in a melt of urea.229,277 Additionally, the insertion of copper into metal-free phthalocyanine in butan-l-ol and pentan-l-ol is possible. The copper salts used in this case are copper(I) chloride112 and copper(II) acetate.290 Starting from copper(II) acetate, copper phthalocyanine can also be prepared in ethylene glycol.127 As mentioned above, copper phthalocyanine often occurs as a byproduct of the Rosenmund-von Braun reaction. To increase the yield of the phthalocyanine the solvent dimethylformamide can be substituted by quinoline. Due to the higher boiling point of quinoline, the copper phthalocyanine is the main product of the reaction of copper(I) cyanide and 1,2-dibromoben-zene.130... [Pg.735]

Alkyl substituted dinitropentanes. There are two such compds of interest 1,2-Dinitro-2-Methyl-Propane. See Vol 5, D1391-R and Vol 2, B368-R where it is described as Dinitro-iso-butane The Sodium salt of 1,1-Dtnitro-2 Methoxy-Pentene. CH3.CH2.CH2.CH(0CH3).C.(Na)(N02)2,... [Pg.606]

The central bond of the l-(arylsulfonyl)bicyclo[1.1.0]butane system behaves like the double bond of a, /i-unsaturated sulfones to give alkyl-substituted cyclobutyl aryl sulfones on treatment with organometallic reagents (equation 20)17. This method has been applied... [Pg.767]

The photo-Kolbe reaction is the decarboxylation of carboxylic acids at tow voltage under irradiation at semiconductor anodes (TiO ), that are partially doped with metals, e.g. platinum [343, 344]. On semiconductor powders the dominant product is a hydrocarbon by substitution of the carboxylate group for hydrogen (Eq. 41), whereas on an n-TiOj single crystal in the oxidation of acetic acid the formation of ethane besides methane could be observed [345, 346]. Dependent on the kind of semiconductor, the adsorbed metal, and the pH of the solution the extent of alkyl coupling versus reduction to the hydrocarbon can be controlled to some extent [346]. The intermediacy of alkyl radicals has been demonstrated by ESR-spectroscopy [347], that of the alkyl anion by deuterium incorporation [344]. With vicinal diacids the mono- or bisdecarboxylation can be controlled by the light flux [348]. Adipic acid yielded butane [349] with levulinic acid the products of decarboxylation, methyl ethyl-... [Pg.140]

Recent efforts in the development of efficient routes to highly substituted yS-ami-no acids based on asymmetric Mannich reactions with enantiopure sulfmyl imine are worthy of mention. Following the pioneering work of Davis on p-tolu-enesulfmyl imines [116], Ellman and coworkers have recently developed a new and efficient approach to enantiomerically pure N-tert-butanesulfmyl imines and have reported their use as versatile intermediates for the asymmetric synthesis of amines [91]. Addition of titanium enolates to tert-butane sulfmyl aldimines and ketimines 31 proceeds in high yields and diastereoselectivities, thus providing general access to yS -amino acids 32 (Scheme 2.5)... [Pg.44]

The use of azodicarboxylates as a route to dioxaphosphoranes continues to attract attention. In the most recent contribution, triphenylphosphine and di-iso-propyl azodicarboxylate (43) are shown to react with prcpane-1,3-diol and butane-1,4-diol in THF at 0°C under high dilution conditions to give the expected six-and seven-membered-ring phosphoranes (44 ab)36. In more concentrated solution however, cyclic oligomers are formed. Substituted and ccnformationally restricted 1,3- and 1,4-diols form the expected cyclic phosphoranes without recourse to high dilution techniques. [Pg.65]

The ratio of the amount of n-butane-2-13C to the amount of isobutane produced was, provided measurements were made under conditions where secondary reactions were unimportant (i.e., initial reaction products), constant and independent of temperature, and this ratio was 1/4. At the same time, no scrambling of the 13C occurred i.e, all of the isotopically substituted molecules remained singly labeled. Anderson and Baker (68) speculated that the butane isomerization might have occurred by a recombination of adsorbed surface residues produced by fragmentation of the... [Pg.30]

A variety of substituted dibenzo-fused derivatives 126 have been prepared for evaluation of their biological activities. The synthesis of these compounds involves the reaction of o-acylanilines with pyrroloindolones 125, in boiling butan-l-ol with pyridinium />-toluenesulfonate as catalyst (Equation 8). Compounds such as 126 which contain the benzo[5,6]pyrrolizino[l,2-A]quinoline skeleton exhibit cytotoxicity against several cancer cell lines <2004BML2363>. [Pg.794]

A variety of para-substituted 2-phenyl-2-butanols undergo quick and efficient reductions to the corresponding 2-phenylbutanes when they are dissolved in dichloromethane and a 2-10% excess of phenylmethylneopentylsilane and boron trifluoride is introduced at 0° (Eq. 30).126 Several reactions deserve mention. For example, when R = CF3, use of trifluoroacetic acid produces no hydrocarbon product, even after two hours of reaction time. In contrast, addition of boron trifluoride catalyst provides an 80% yield of product after only two minutes. When R = MeO, both trifluoroacetic acid and boron trifluoride produce a quantitative yield of the hydrocarbon within two minutes. However, when R = NO2, attempts to promote the reduction with either trifluoroacetic acid or even methanesulfonic acid fail even after reaction periods of up to eight hours, only recovered starting alcohol is obtained. Use of boron trifluoride provides a quantitative conversion into 2-(/ -nitrophenyl)butane after only ten minutes. It is significant that the normally easily reducible nitro group survives these conditions entirely intact.126129 Triethylsilane may be used as the silane.143... [Pg.22]

The course of decomposition of confirmed or presumed metallocyclo-butane intermediates is important, but most results reported deal with stoichiometric rather than catalytic processes. Retention of the 3-carbon skeleton via pathways d or f in Eq. (26) occurs much more frequently than does cleavage to metathesis-related products. For example, thermolysis of phenyl-substituted platinocyclobutanes yields propenylben-zenes and phenyl-cyclopropane, but no styrene or ethylene (77). Similarly, the decomposition of tantalum carbene adducts (8) with olefins... [Pg.464]

In this equation the —225.7 1.3 kJ mol 1 is the hydrogenation enthalpy of 1,3-butadiene to n-butane. This last expression speaks to substituent/diene interactions and to substituent-substituent interactions. Both electronic and steric effects contribute. Again, this allows calibration of a substituted diene with 1,3-butadiene itself. A positive sign can be interpreted as the substituted species being more stabilized than the archetype. [Pg.76]

Conditions u.v. light (1) Not just light . Any H atom on butane could have been substituted. [Pg.125]

Substituted cyclopropanols were also obtained, albeit in moderate yields, upon reaction of esters such as methyl pentanoate with l,4-bis(bromomagnesium)butane (38) in the presence of titanium tetraisopropoxide. This corroborates the formation of a titanacy-clopropane—ethylene complex 40 from an initially formed titanacyclopentane derivative 39 (Scheme 11.12) [103], Apparently, an ester molecule readily displaces the ethylene ligand from 40, and a subsequent insertion of the carbonyl group into the Ti—C bond, a formal [2S + 2J cycloaddition, leads to the oxatitanacyclopentane 42, the precursor to 1-butylcyclopropanol (43). [Pg.405]


See other pages where Butanes, 2-substituted is mentioned: [Pg.122]    [Pg.117]    [Pg.141]    [Pg.193]    [Pg.29]    [Pg.122]    [Pg.128]    [Pg.15]    [Pg.123]    [Pg.293]    [Pg.353]    [Pg.112]    [Pg.37]    [Pg.530]    [Pg.173]    [Pg.237]    [Pg.53]    [Pg.325]    [Pg.289]    [Pg.143]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



© 2024 chempedia.info