Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile Rubber NR

In a particular application involving a typical O type mount, the nitrile rubber (NR) compound causes a resonance frequency of 28 Hz, whereas resonance was previously tolerable only well below 20 Hz. In this case, a blend of NR and bromobutyl rubber is more suitable. A comparison is shown in Table 3. [Pg.652]

Although a large number of synthetic elastomers are now available, natural rubber must still be regarded as the standard elastomer because of the excellently balanced combination of desirable qualities. The most important synthetic elastomer is styrene-butadiene rubber (SBR), which is used predominantly for tires when reinforced with carbon black. Nitrile rubber (NR) is a raudom copolymer of acrylonitrile and butadiene and is used when an elastomer is required that is resistant to swelling in organic solvents. [Pg.469]

Butadiene is used primarily in the production of synthetic rubbers, including styrene-butadiene rubber (SBR), polybutadiene nibber (BR), styrene-butadiene latex (SBL), chloroprene rubber (CR) and nitrile rubber (NR). Important plastics containing butadiene as a monomeric component are shock-resistant polystyrene, a two-phase system consisting of polystyrene and polybutadiene ABS polymers consisting of acrylonitrile, butadiene and styrene and a copolymer of methyl methacrylate, butadiene and styrene (MBS), which is used as a modifier for poly(vinyl chloride). It is also used as an intermediate in the production of chloroprene, adiponitrile and other basic petrochemicals. The worldwide use pattern for butadiene in 1981 was as follows (%) SBR + SBL, 56 BR, 22 CR, 6 NR, 4 ABS, 4 hexamethylenediamine, 4 other, 4. The use pattern for butadiene in the United States in 1995 was (%) SBR, 31 BR, 24 SBL, 13 CR, 4 ABS, 5 NR, 2 adiponitrile, 12 and other, 9 (Anon., 1996b). [Pg.114]

Polymerization Reactions. The polymerization of butadiene with itself and with other monomers represents its largest commercial use. The commercially most important polymers are styrene—butadiene rubber (SBR), polybutadiene (BR), styrene—butadiene latex (SBL), acrylonitrile—butadiene—styrene polymer (ABS), and nitrile rubber (NR). The reaction mechanisms are free-radical, anionic, cationic, or coordinate, depending on the nature of the initiators or catalysts (194—196). [Pg.345]

TherbanATomac Fully or partially hydrogenated nitrile rubber, NR, with AN = 33-43 % Polysar/Bayer A... [Pg.2342]

Nitrile rubbers (NRs), are copolymers of butadiene and acrylonitrile and are frequently referred to as Buna N. Their properties vary with the acrylonitrile content. Nitrile rubbers exhibit a high degree of resistance to attack by oils at both normal and... [Pg.128]

Examples of Cure Systems in NR, SBR, and Nitrile Rubber. Table 6 offers examples of recipes for conventional, semi-EV, and EV cure systems ia a simple, carbon black-filled natural mbber compound cured to optimum (t90) cure. The distribution of cross-links obtained is found ia Figure 9 (24). [Pg.239]

The common feature of these materials was that all contained a high proportion of acrylonitrile or methacrylonitrile. The Vistron product, Barex 210, for example was said to be produced by radical graft copolymerisation of 73-77 parts acrylonitrile and 23-27 parts by weight of methyl acrylate in the presence of a 8-10 parts of a butadiene-acrylonitrile rubber (Nitrile rubber). The Du Pont product NR-16 was prepared by graft polymerisation of styrene and acrylonitrile in the presence of styrene-butadiene copolymer. The Monsanto polymer Lopac was a copolymer of 28-34 parts styrene and 66-72 parts of a second monomer variously reported as acrylonitrile and methacrylonitrile. This polymer contained no rubbery component. [Pg.416]

If polypropylene is too hard for the purpose envisaged, then the user should consider, progressively, polyethylene, ethylene-vinyl acetate and plasticised PVC. If more rubberiness is required, then a vulcanising rubber such as natural rubber or SBR or a thermoplastic polyolefin elastomer may be considered. If the material requires to be rubbery and oil and/or heat resistant, vulcanising rubbers such as the polychloroprenes, nitrile rubbers, acrylic rubbers or hydrin rubbers or a thermoplastic elastomer such as a thermoplastic polyester elastomer, thermoplastic polyurethane elastomer or thermoplastic polyamide elastomer may be considered. Where it is important that the elastomer remain rubbery at very low temperatures, then NR, SBR, BR or TPO rubbers may be considered where oil resistance is not a consideration. If, however, oil resistance is important, a polypropylene oxide or hydrin rubber may be preferred. Where a wide temperature service range is paramount, a silicone rubber may be indicated. The selection of rubbery materials has been dealt with by the author elsewhere. ... [Pg.896]

Mackey and Weil provide the general formula for a NR-P tape adhesive as shown in Table 9 ([210], Table 21, p. 219). They also give brief descriptions of the various grades of nitrile rubber available. [Pg.930]

In addition to epoxy-phenolic adhesives three-part epoxy-phenolic-nitrile rubber systems are used in metal-metal edge joints and honeycomb constructions [208], These add toughness not available in most EP systems and improve peel strengths. When used on honeycomb, the NR-P is normally applied to the aluminum skin and the EP to the honeycomb for assembly. Service temperature limitations are those imposed by the NR-P part. [Pg.932]

TPEs from blends of rubber and plastics constitute an important category of TPEs. These can be prepared either by the melt mixing of plastics and rubbers in an internal mixer or by solvent casting from a suitable solvent. The commonly used plastics and rubbers include polypropylene (PP), polyethylene (PE), polystyrene (PS), nylon, ethylene propylene diene monomer rubber (EPDM), natural rubber (NR), butyl rubber, nitrile rubber, etc. TPEs from blends of rubbers and plastics have certain typical advantages over the other TPEs. In this case, the required properties can easily be achieved by the proper selection of rubbers and plastics and by the proper change in their ratios. The overall performance of the resultant TPEs can be improved by changing the phase structure and crystallinity of plastics and also by the proper incorporation of suitable fillers, crosslinkers, and interfacial agents. [Pg.634]

In one of the first reports on fiber reinforcement of rubber, natural rubber (NR) was used by Collier [9] as the rubber matrix, which was reinforced using short cotton fibers. Some of the most commonly used rubber matrices for fiber reinforcement are NR, ethylene-propylene-diene monomer (EPDM) rubber, styrene-butadiene rubber (SBR), polychloroprene rubber, and nitrile rubber [10-13]. These rubbers were reinforced using short and long fibers including jute, silk, and rayon [14—16]. [Pg.353]

The accelerated sulfur vulcanization of general-purpose diene rubbers (e.g., NR, styrene-butadiene rubber [SBR], and butadiene rubber [BR]) by sulfur in the presence of organic accelerators and other rubbers, which are vulcanized by closely related technology (e.g., ethylene-propylene-diene monomer [EPDM] mbber, butyl rubber [HR], halobutyl mbber [XIIR], nitrile rubber [NBR]) comprises more than 90% of all vulcanizations. [Pg.416]

Elastomer types used successfully in these areas are natural rubber (NR), polychloroprene (CR), and nitrile rubber (NBR), and hydrogenated nitrile rubber (HNBR), where oil resistance is also required. [Pg.627]

A 50 mole % epoxidised NR exhibits oil resistance only marginally inferior to that of nitrile rubber. [Pg.86]

Nitrile rubber can be cured by sulphur, sulphur donor systems and peroxides. However, the solubility of sulphur in nitrile rubber is much lower than in NR, and a magnesium carbonate coated grade (sulphur MC) is normally used this is added as early in the mixing cycle as possible. Less sulphur and more accelerator than is commonly used for curing natural rubber is required. A cadmium oxide/magnesium oxide cure system gives improved heat resistance, but the use of cadmium, a heavy metal, will increasingly be restricted. [Pg.90]

Solid-state 13C NMR has been used to identify elastomers in binary blends of chloroprene (CR) and NR, CR and CSM, NR and CSM, and SBR and acrylonitrile-butadiene rubber (NBR). The type of NBR can be determined by identifying the sequences of acrylonitrile and butadiene. The tertiary blend of NR/SBR/BR was also studied [49]. High-temperature 13C solid-state NMR identified ethylene-propylene diene terpolymer (EPDM) and fluoro and nitrile rubbers [50]. [Pg.340]


See other pages where Nitrile Rubber NR is mentioned: [Pg.743]    [Pg.626]    [Pg.717]    [Pg.717]    [Pg.661]    [Pg.743]    [Pg.626]    [Pg.717]    [Pg.717]    [Pg.661]    [Pg.929]    [Pg.930]    [Pg.312]    [Pg.312]    [Pg.355]    [Pg.357]    [Pg.363]    [Pg.364]    [Pg.370]    [Pg.373]    [Pg.464]    [Pg.777]    [Pg.240]    [Pg.15]    [Pg.101]    [Pg.102]    [Pg.57]    [Pg.83]    [Pg.146]   


SEARCH



Nitrile rubber

© 2024 chempedia.info