Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nicotinamide adenine dinucleotide structure

FIGURE 15 5 Structure of NAD the oxidized form of the coenzyme nicotinamide adenine dinucleotide The functional part of the coen zyme is framed in red... [Pg.646]

Oxidation of P-nicotinamide adenine dinucleotide (NADH) to NAD+ has attracted much interest from the viewpoint of its role in biosensors reactions. It has been reported that several quinone derivatives and polymerized redox dyes, such as phenoxazine and phenothiazine derivatives, possess catalytic activities for the oxidation of NADH and have been used for dehydrogenase biosensors development [1, 2]. Flavins (contain in chemical structure isoalloxazine ring) are the prosthetic groups responsible for NAD+/NADH conversion in the active sites of some dehydrogenase enzymes. Upon the electropolymerization of flavin derivatives, the effective catalysts of NAD+/NADH regeneration, which mimic the NADH-dehydrogenase activity, would be synthesized [3]. [Pg.363]

Newman, Melvin S., 93 Newman projection, 93 molecular model of, 93 Nicotinamide adenine dinucleotide, biological oxidations with, 625-626 reactions of, 725 structure of, 725, 1044 Nicotinamide adenine dinucleotide (reduced), biological reductions with, 610-611... [Pg.1308]

Niacin. Figure 2 Structure of the coenzymes NAD+ (nicotinamide-adenine dinucleotid) and NADP+ (nicotinamide-adenine dinucleotid phosphate). [Pg.851]

Zinc-containing alcohol dehydrogenases take up two electrons and a proton from alcohols in the form of a hydride. The hydride acceptor is usually NAD(P) (the oxidized form of nicotinamide adenine dinucleotide (NADH) or its phosphorylated derivative, NADPH). Several liver alcohol dehydrogenases have been structurally characterized, and Pig. 17.8 shows the environment around the catalytic Zn center and the bound NADH cofactor. [Pg.610]

The second type of biological electron transfer involves a variety of small molecules, both organic and inorganic. Examples of these are (a) nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as two electron carriers and (b) quinones and flavin mononucleotide (FMN), which may transfer one or two electrons. The structure of NAD and its reduced counterpart NADH are shown in Figure 1.12. [Pg.20]

Most coenzymes have aromatic heterocycles as major constituents. While enzymes possess purely protein structures, coenzymes incorporate non-amino acid moieties, most of them aromatic nitrogen het-erocycles. Coenzymes are essential for the redox biochemical transformations, e.g., nicotinamide adenine dinucleotide (NAD, 13) and flavin adenine dinucleotide (FAD, 14) (Scheme 5). Both are hydrogen transporters through their tautomeric forms that allow hydrogen uptake at the termini of the quinon-oid chain. Thiamine pyrophosphate (15) is a coenzyme that assists the decarboxylation of pyruvic acid, a very important biologic reaction (Scheme 6). [Pg.3]

Kurz, L.C. and Erieden, C. (1977). Comparison of the structures of enzymatic and nonenz3fmatic transition states. Reductive desulfonation of 4-X-2,6-dinitrobenzene-sulfonates by reduced nicotinamide adenine dinucleotide. Biochemistry 16, 5207 -5216... [Pg.75]

Although the structures for molecules having niacin activity are simple, the forms in which they act in human biochemistry are not so simple. Nicotinic acid and nicotinamide are precursors for three complex coenzymes in multiple oxida-tion/reduction (redox) reactions nicotinamide mononucleotide, NMN nicotinamide adenine dinucleotide, NAD+ and nicotinamide adenine dinucleotide phosphate, NADP. I shall use NAD+ as representative of the class. NADH is the corresponding reduced form. ... [Pg.201]

Figure 3.1 Amino add side-chain groups involved in binding NAD at the active site of an enzyme. The enzyme is glyceraldehyde dehydrogenase. More than 20 amino acids, the position of which in the primary structure is indicated by the number, counting from the N-terminal amino acid, are involved in the binding. This emphasises the complexity of the binding that is responsible for the specificity of the enzyme for NAD (depicted in bold). The molecular structure of nicotinamide adenine dinucleotide (NAD ) provided in Appendix 3.3. Figure 3.1 Amino add side-chain groups involved in binding NAD at the active site of an enzyme. The enzyme is glyceraldehyde dehydrogenase. More than 20 amino acids, the position of which in the primary structure is indicated by the number, counting from the N-terminal amino acid, are involved in the binding. This emphasises the complexity of the binding that is responsible for the specificity of the enzyme for NAD (depicted in bold). The molecular structure of nicotinamide adenine dinucleotide (NAD ) provided in Appendix 3.3.
The sirtuins (silent information regulator 2-related proteins class III HDACs) form a specific class of histone deacetylases. First, they do not share any sequence or structural homology with the other HDACs. Second, they do not require zinc for activity, but rather use the oxidized form of nicotinamide adenine dinucleotide (NAD ) as cofactor. The reaction catalyzed by these enzymes is the conversion of histones acetylated at specific lysine residues into deacetylated histones, the other products of the reaction being nicotinamide and the metabolite 2 -0-acetyl-adenosine diphosphate ribose (OAADPR) [51, 52]. As HATs and other HDACs, sirtuins not only use acetylated histones as substrates but can also deacetylate other proteins. Intriguingly, some sirtuins do not display any deacetylase activity but act as ADP-ribosyl transferases. [Pg.34]

So far 18 different members of HDACs have been discovered in humans and classified into four classes based on their homology to yeast histone deacetylases [33]. Class I includes four different subtypes (HDACl, 2, 3, 8), class II contains six subtypes tvhich are divided into two subclasses class Ila with subtypes HDAC4, 5, 7, 9 and class Ilb with HDAC6, 10. Class I and class II HDAC share significant structural homology, especially within the highly conserved catalytic domains. HDACs 6 and 10 are unique as they have two catalytic domains. HDACll is referred to as class IV. While the activity of class I, II and IV HDACs depends on a zinc based catalysis mechanism, the class III enzymes, also called sirtuins, require nicotinamide adenine dinucleotide as a cofactor for their catalysis. [Pg.62]

The alkaloids are also relevant to drug design. Alkaloids are complex heterocyclic compounds that contain nitrogen and thus have base-like (hence the term alkaloid ) properties they are extremely structurally diverse. Nicotine is one of the simplest alkaloids. Oxidation of nicotine produces nicotinic acid, a vitamin that is incorporated into the important coenzyme nicotinamide adenine dinucleotide, commonly referred to as NAD" (oxidized form). The neurotransmitter serotonin is an alkaloid containing the aromatic indole ring system. [Pg.480]

Although zinc itself is not redox-active, some class I enzymes containing zinc in their active sites are known. The most prominent are probably alcohol dehydrogenase and copper-zinc superoxide dismutase (Cu,Zn-SOD). AU have in common that the redox-active agent is another transition-metal ion (copper in Cu,Zn-SOD) or a cofactor such as nicotinamide adenine dinucleotide (NAD+/NADH). The Zn(II) ion affects the redox reaction only in an indirect manner, but is nevCTtheless essential and cannot be regarded simply as a structural factor. [Pg.9]

Alcohol dehydrogenases (ADH EC 1.1.1.1), for which several X-ray structures are available ", catalyze the biological oxidation of primary and secondary alcohols via the formal transfer of a hydride anion to the oxidized form of nicotinamide adenine dinucleotide (NAD ), coupled with the release of a proton. Liver alcohol dehydrogenase (LADH) consists of two similar subunits, each of which contains two zinc sites, but only one site within each subunit is catalytically active. The catalytic zinc is coordinated in a distorted tetrahedral manner to a histidine residue, two cysteine residues and a water molecule. The remaining zinc is coordinated tetrahedrally to four cysteine residues and plays only a structural role . [Pg.9]

What are enzymes One can only give a general answer because the structures are too complex to write down here. Enzymes are proteins, but of a type called globular because the polypeptide chain that is a part of all proteins is folded around on itself. Most enzymes need a partner (or coenzyme) to become active. The partner may be as simple as Mg2+ but as complex as nicotinamide adenine dinucleotide (NAD). [Pg.570]

Functioning of the enzyme requires the presence of a coenzyme, nicotinamide adenine dinucleotide which exists in its oxidized (NAD+) or reduced (NADH) forms. The structure of NADH is shown in (177). Reduction or oxidation occurs by transfer of the pro-R C-4 hydrogen atom of the nicotinamide stereospecifically to or from the substrate. The reaction is therefore a ternary one, with the substrate and coenzyme necessarily within the active site for the reaction to occur.l46Sa... [Pg.1009]

In addition to their role in genetics, nucleotides play other important roles in biochemistry. Key enzymes and coenzymes such as nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD), and vitamin B12 also include nucleotides as part of their structures. Also, the major component of viruses is DNA. [Pg.346]

BL Stoddard, AM Dean, DE Koshland Jr. Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-A resolution a pseudo-Michaelis ternary complex. Biochemistry 32 9310-9316, 1993. [Pg.553]

Figure 4.7 Structural formula of nicotinamide adenine dinucleotide in its reduced form of NADH + H+ and its oxidized form NAD+. Figure 4.7 Structural formula of nicotinamide adenine dinucleotide in its reduced form of NADH + H+ and its oxidized form NAD+.

See other pages where Nicotinamide adenine dinucleotide structure is mentioned: [Pg.274]    [Pg.646]    [Pg.270]    [Pg.394]    [Pg.74]    [Pg.303]    [Pg.343]    [Pg.367]    [Pg.609]    [Pg.245]    [Pg.249]    [Pg.72]    [Pg.44]    [Pg.212]    [Pg.237]    [Pg.560]    [Pg.560]    [Pg.9]    [Pg.200]    [Pg.475]    [Pg.512]    [Pg.653]    [Pg.232]    [Pg.187]   
See also in sourсe #XX -- [ Pg.646 ]

See also in sourсe #XX -- [ Pg.646 ]

See also in sourсe #XX -- [ Pg.646 ]

See also in sourсe #XX -- [ Pg.725 , Pg.1044 ]

See also in sourсe #XX -- [ Pg.725 , Pg.1044 ]

See also in sourсe #XX -- [ Pg.600 ]

See also in sourсe #XX -- [ Pg.63 , Pg.65 , Pg.66 , Pg.67 , Pg.70 , Pg.77 ]

See also in sourсe #XX -- [ Pg.378 ]

See also in sourсe #XX -- [ Pg.669 ]

See also in sourсe #XX -- [ Pg.736 ]

See also in sourсe #XX -- [ Pg.9 , Pg.112 , Pg.115 , Pg.117 ]

See also in sourсe #XX -- [ Pg.632 ]

See also in sourсe #XX -- [ Pg.203 ]

See also in sourсe #XX -- [ Pg.751 , Pg.1072 ]




SEARCH



Adenine structure

Dinucleotide

Dinucleotide structures

NADP+ (nicotinamide adenine dinucleotide structure

Nicotinamide adenine

Nicotinamide adenine dinucleotid

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotides

Nicotinamide dinucleotide

Nicotinamide structure

© 2024 chempedia.info