Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nicotinamide structure

FIGURE 15 5 Structure of NAD the oxidized form of the coenzyme nicotinamide adenine dinucleotide The functional part of the coen zyme is framed in red... [Pg.646]

Oxidation of P-nicotinamide adenine dinucleotide (NADH) to NAD+ has attracted much interest from the viewpoint of its role in biosensors reactions. It has been reported that several quinone derivatives and polymerized redox dyes, such as phenoxazine and phenothiazine derivatives, possess catalytic activities for the oxidation of NADH and have been used for dehydrogenase biosensors development [1, 2]. Flavins (contain in chemical structure isoalloxazine ring) are the prosthetic groups responsible for NAD+/NADH conversion in the active sites of some dehydrogenase enzymes. Upon the electropolymerization of flavin derivatives, the effective catalysts of NAD+/NADH regeneration, which mimic the NADH-dehydrogenase activity, would be synthesized [3]. [Pg.363]

FIGURE 18.19 The structures and redox states of the nicotinamide coenzymes. Hydride ion (H , a proton with two electrons) transfers to NAD to produce NADH. [Pg.589]

The structures of pyridine, nicotinic acid, nicotinamide, and nicotine. [Pg.590]

What accounts for this stereospecificity It arises from the fact that the enzymes (and especially the active sites of enzymes) are inherently asymmetric structures. The nicotinamide coenzyme (and the substrate) fit the active site in only one way. Malate... [Pg.656]

Newman, Melvin S., 93 Newman projection, 93 molecular model of, 93 Nicotinamide adenine dinucleotide, biological oxidations with, 625-626 reactions of, 725 structure of, 725, 1044 Nicotinamide adenine dinucleotide (reduced), biological reductions with, 610-611... [Pg.1308]

Niacin (Fig. 1) is a collective name for all vitamers having the biological activity associated with nicotinamide (= pyridine-3-carboxamide), including nicotinic acid (= pyridine-3-carboxylic acid) and a variety of pyridine nucleotide structures. [Pg.850]

Nicotinamide and nicotinic acid are both white crystalline substances. Their aqueous solution has a maximal UV absorbance at 263 nm. Both vitamers have the same biological activity as they can be converted into each other. Figure 2 shows the structure of the coenzyme forms NAD+ and NADP+. [Pg.850]

Niacin. Figure 1 Structure of nicotinic acid and nicotinamide. [Pg.851]

Niacin. Figure 2 Structure of the coenzymes NAD+ (nicotinamide-adenine dinucleotid) and NADP+ (nicotinamide-adenine dinucleotid phosphate). [Pg.851]

FIGURE 10.7 Structural formula of nicotinic acid and nicotinamide. 1 — nicotinic acid, 2 — nicoinamide. [Pg.246]

Zinc-containing alcohol dehydrogenases take up two electrons and a proton from alcohols in the form of a hydride. The hydride acceptor is usually NAD(P) (the oxidized form of nicotinamide adenine dinucleotide (NADH) or its phosphorylated derivative, NADPH). Several liver alcohol dehydrogenases have been structurally characterized, and Pig. 17.8 shows the environment around the catalytic Zn center and the bound NADH cofactor. [Pg.610]

The second type of biological electron transfer involves a variety of small molecules, both organic and inorganic. Examples of these are (a) nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as two electron carriers and (b) quinones and flavin mononucleotide (FMN), which may transfer one or two electrons. The structure of NAD and its reduced counterpart NADH are shown in Figure 1.12. [Pg.20]

Figure 5.2 The structure of NAD+ and NADP+ and the role of the nicotinamide moiety as an... Figure 5.2 The structure of NAD+ and NADP+ and the role of the nicotinamide moiety as an...
Most coenzymes have aromatic heterocycles as major constituents. While enzymes possess purely protein structures, coenzymes incorporate non-amino acid moieties, most of them aromatic nitrogen het-erocycles. Coenzymes are essential for the redox biochemical transformations, e.g., nicotinamide adenine dinucleotide (NAD, 13) and flavin adenine dinucleotide (FAD, 14) (Scheme 5). Both are hydrogen transporters through their tautomeric forms that allow hydrogen uptake at the termini of the quinon-oid chain. Thiamine pyrophosphate (15) is a coenzyme that assists the decarboxylation of pyruvic acid, a very important biologic reaction (Scheme 6). [Pg.3]

We have stressed the direct relationship of specific nutritional needs to enzyme building, but this is only one possibility. In the case of nicotinamide, for example, which in the form of coenzymes I and II functions in oxidation-reduction reactions, an individual s need may be great because of the genetic ineffectiveness of the mechanism for building nicotinamide into enzyme systems, but the difficulty may lie at another site. Possibly there is difficulty in digestion (of the combined forms) or more likely absorption, which precludes the individual from getting a substantial portion of the nicotinamide out of his food to the cells that need it. Even the mechanism for transport may be at fault. We wish to emphasize that the effectiveness or ineffectiveness of the structures and mechanisms which may be... [Pg.204]


See other pages where Nicotinamide structure is mentioned: [Pg.274]    [Pg.646]    [Pg.590]    [Pg.590]    [Pg.591]    [Pg.270]    [Pg.394]    [Pg.300]    [Pg.94]    [Pg.74]    [Pg.303]    [Pg.257]    [Pg.275]    [Pg.343]    [Pg.190]    [Pg.15]    [Pg.367]    [Pg.609]    [Pg.620]    [Pg.139]    [Pg.466]    [Pg.466]    [Pg.469]    [Pg.471]    [Pg.245]    [Pg.249]    [Pg.72]    [Pg.28]    [Pg.55]    [Pg.62]    [Pg.65]    [Pg.707]   
See also in sourсe #XX -- [ Pg.285 ]

See also in sourсe #XX -- [ Pg.285 ]

See also in sourсe #XX -- [ Pg.413 ]

See also in sourсe #XX -- [ Pg.205 ]

See also in sourсe #XX -- [ Pg.200 , Pg.201 ]

See also in sourсe #XX -- [ Pg.1095 ]




SEARCH



NADP+ (nicotinamide adenine dinucleotide structure

Nicotinamide adenine dinucleotide structure

Nicotinamide chemical structure

Nicotinamide mononucleotide structure

© 2024 chempedia.info