Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indole, aromaticity

The synthesis of functionahzed tetrahydrocarbazoles can be promoted by microwave irradiation [84], The organocatalytic four-component reaction of a solution of 2-substituted indole, aromatic aldehyde (2 equiv) and Mel-drum s acid in benzene in the presence of DL-proline proceeds when heated under Dean-Stark conditions for 5 min in a single-mode microwave reactor to give the tetrahydrocarbazole product as a mixture of diastereoisomers (Scheme 24). [Pg.48]

Ehrlich p-Dimethylaminobenzaldehyde (100 g l"1) in cone. HC1. Mix 1 volume with 4 volumes of acetone. No heat required. Reacts within 20 min Trp Citrulline Pink/red Yellow Some indoles, aromatic amines and ureides react. Use after ninhydrin in multiple-dip sequences... [Pg.369]

Analysis and mass spectral molecular weight determination established the empirical formula, C21H26N2O3, for stemmadenine (8, 116, 117). Its UV-spectrum was characteristic of an indole (cf. ref. 55), while the IR-spectrum indicated the presence of a normal ester grouping (1718 cm-1) and the absence of any substituent in the indole aromatic ring (116). These findings were fully borne out by NMR-spectroscopy which showed the presence of an indole NH (9.3 S), four aromatic protons, and a carbo-methoxyl methyl singlet (3.79 S). A single vinyl proton quartet (5.4 S)... [Pg.457]

Tanabe (772) and Acklin et al. (173) independently, and results were in good agreement. They showed that these related metabolites are derived from tryptophan and geranylgeraniol. Acklin etal. (173) reported that the probable biosynthetic sequence is paspaline (93) paspalicine (97) — paspalinine (94) (Scheme 18). It might be further speculated that paspalinine is converted to aflatrem by addition of an isoprene unit at the 4 position of the indole aromatic ring and that paspalitrem A (98) is derived via isoprenylation at the 5 position. [Pg.227]

The excellent stereoselectivity of the above photocycloaddition reaction is explained by the preferred approach of the vinylogous amide from the a-face of the indole 45. The approach of the amide from the p-face 46, (Scheme 10) is disfavored because of the steric interaction of the indole aromatic ring and the R substituent alpha to the vinylogous amide. [Pg.289]

N, C, H only (37) Imidazole, indole, aromatic N systems, pyrazole, pyrrole... [Pg.82]

Keywords Indoles, aromatic amines, oxetanyl aldehydes, asymmetric catalyst A, diethyl ether, room temperature, asymmetric multicomponent reaction, aza-Diels-Alder reaction, indole-alkaloid-type polycycles, diastereoseltivity... [Pg.151]

Crystal stmctures of complexes of copper(II) with aromatic amine ligands and -amino acids " " and dipeptides" have been published. The stmctures of mixed ligand-copper complexes of L-tryptophan in combination with 1,10-phenanthroline and 2,2 -bipyridine and L-tyrosine in combination with 2,2 -bipyridine are shown in Figure 3.2. Note the subtle difference between the orientation of the indole ring in the two 1,10-phenanthroline complexes. The distance between the two... [Pg.90]

Reactions of aromatic and heteroaromatic rings are usually only found with highly reactive compounds containing strongly electron donating substituents or hetero atoms (e.g. phenols, anilines, pyrroles, indoles). Such molecules can be substituted by weak electrophiles, and the reagent of choice in nature as well as in the laboratory is usually a Mannich reagent or... [Pg.291]

Indole is classified as a 7c-excessive aromatic compound. It is isoelectronic with naphthalene, with the heterocyclic nitrogen atom donating twm of the ten 7t-electrons. [Pg.2]

As is broadly true for aromatic compounds, the a- or benzylic position of alkyl substituents exhibits special reactivity. This includes susceptibility to radical reactions, because of the. stabilization provided the radical intermediates. In indole derivatives, the reactivity of a-substituents towards nucleophilic substitution is greatly enhanced by participation of the indole nitrogen. This effect is strongest at C3, but is also present at C2 and to some extent in the carbocyclic ring. The effect is enhanced by N-deprotonation. [Pg.3]

The final step can involve introduction of the amino group or of the carbonyl group. o-Nitrobenzyl aldehydes and ketones are useful intermediates which undergo cyclization and aromatization upon reduction. The carbonyl group can also be introduced by oxidation of alcohols or alkenes or by ozonolysis. There are also examples of preparing indoles from o-aminophcnyl-acetonitriles by partial reduction of the cyano group. [Pg.14]

The development of methods for aromatic substitution based on catalysis by transition metals, especially palladium, has led to several new methods for indole synthesis. One is based on an intramolecular Heck reaction in which an... [Pg.35]

The photocyclization of iV-vinylanilines is an e.xarnple of a general class of photocyclizations[l]. If the vinyl substituent has a potential leaving group or the reaction is carried out so that oxidation occurs, the cyclization intermediate can aromatize to an indole. [Pg.39]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

In a more elaborate and specific synthesis, the terpenoid indole skeleton found in haplaindole G, which is isolated from a blue-green alga, was constructed by addition of a nucleophilic formyl equivalent to enone 6.5A. Cyelization and aromatization to the indole 6.6B followed Hg -catalysed unmasking of the aldehyde group[6]. [Pg.50]

Retrosynthesis a in Scheme 7,1 corresponds to the Fischer indole synthesis which is the most widely used of all indole syntheses. The Fischer cyclization converts arylhydrazones of aldehydes or ketones into indoles by a process which involves orf/io-substitution via a sigmatropic rearrangement. The rearrangement generates an imine of an o-aminobenzyl ketone which cyclizes and aromatizes by loss of ammonia. [Pg.54]

Indoles are usually constructed from aromatic nitrogen compounds by formation of the pyrrole ring as has been the case for all of the synthetic methods discussed in the preceding chapters. Recently, methods for construction of the carbocyclic ring from pyrrole derivatives have received more attention. Scheme 8.1 illustrates some of the potential disconnections. In paths a and b, the syntheses involve construction of a mono-substituted pyrrole with a substituent at C2 or C3 which is capable of cyclization, usually by electrophilic substitution. Paths c and d involve Diels-Alder reactions of 2- or 3-vinyl-pyrroles. While such reactions lead to tetrahydro or dihydroindoles (the latter from acetylenic dienophiles) the adducts can be readily aromatized. Path e represents a category Iley cyclization based on 2 -I- 4 cycloadditions of pyrrole-2,3-quinodimcthane intermediates. [Pg.79]

Donor substituents on the vinyl group further enhance reactivity towards electrophilic dienophiles. Equations 8.6 and 8.7 illustrate the use of such functionalized vinylpyrroles in indole synthesis[2,3]. In both of these examples, the use of acetyleneic dienophiles leads to fully aromatic products. Evidently this must occur as the result of oxidation by atmospheric oxygen. With vinylpyrrole 8.6A, adducts were also isolated from dienophiles such as methyl acrylate, dimethyl maleate, dimethyl fumarate, acrolein, acrylonitrile, maleic anhydride, W-methylmaleimide and naphthoquinone. These tetrahydroindole adducts could be aromatized with DDQ, although the overall yields were modest[3]. [Pg.84]

Lithiated indoles can be alkylated with primary or allylic halides and they react with aldehydes and ketones by addition to give hydroxyalkyl derivatives. Table 10.1 gives some examples of such reactions. Entry 13 is an example of a reaction with ethylene oxide which introduces a 2-(2-hydroxyethyl) substituent. Entries 14 and 15 illustrate cases of addition to aromatic ketones in which dehydration occurs during the course of the reaction. It is likely that this process occurs through intramolecular transfer of the phenylsulfonyl group. [Pg.95]

The stronger directing effects present in the indoline ring can sometimes be used to advantage to prepare C-substituted indoles. The aniline type of nitrogen present in indoline favours 5,7-substitution. After the substituent is introduced the indoline ring can be aromatized by dehydrogenation (see Section 15.2 for further discussion). A procedure for 7-acylation of indoline... [Pg.136]

While catalytic reduction of the indole ring is feasible, it is slow because of the aromatic character of the C2-C3 double bond. The relative basicity of the indole ring, however, opens an acid-catalysed pathway through 3if-indoleninm intermediates. [Pg.145]

Aromatization of indolines is important in completing synthetic sequences in which the directive effects of the indoline ring have been used to achieve selective carbocyclic substitution[l]. Several methods for aromatization have been developed and some of these are illustrated in Table 15.2. A range of reagents is represented. One type of procedure represents use of oxidants which are known to convert amines to imines. Aromatization then provides the indole. Such reagents must not subsequently oxidize the indole. Mereuric acetate (Entry 1) is known to oxidize other types of amines and presumably reacts by an oxidative deprotonation ot- to the complexed nitrogen. [Pg.148]

Aromatics containing electron releasing groups such as phenols, dim ethyl am in oben 2en e and indole are formylated by 2-ethoxy-l,3-dithiolane in the presence of boron trifluoroetherate, followed by hydrolysis (114). The preformed dithiolanium tetrafluoroborate also undergoes Friedel-Crafts reaction with aromatics such as dim ethyl am in oben 2en e and indole (115), and was used to generate dithiolanium derivatives (formyl precursors) from the enoltrimethylsilyl ether derivatives (116). [Pg.559]


See other pages where Indole, aromaticity is mentioned: [Pg.1301]    [Pg.179]    [Pg.127]    [Pg.20]    [Pg.557]    [Pg.196]    [Pg.5]    [Pg.19]    [Pg.742]    [Pg.1301]    [Pg.179]    [Pg.127]    [Pg.20]    [Pg.557]    [Pg.196]    [Pg.5]    [Pg.19]    [Pg.742]    [Pg.89]    [Pg.251]    [Pg.2]    [Pg.7]    [Pg.16]    [Pg.53]    [Pg.80]    [Pg.154]    [Pg.167]    [Pg.134]   
See also in sourсe #XX -- [ Pg.533 ]

See also in sourсe #XX -- [ Pg.533 ]

See also in sourсe #XX -- [ Pg.323 ]

See also in sourсe #XX -- [ Pg.550 ]




SEARCH



© 2024 chempedia.info