Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nicotinamide adenine dinucleotide oxidase

McNeil, C. J., Spoors, J. A., Cocco, D., Cooper, J. M., Bannister, J. V., Thermostable Reduced Nicotinamide Adenine Dinucleotide Oxidase Application to Amperometric Enzyme Assay , Anal. Chem. 61 (1989) 25-29. [Pg.109]

Complex I (Reduced Nicotinamide-Adenine Dinucleotide-Oxidase)... [Pg.285]

Cu-+ Peroxidase Cytochrome oxidase Nicotinamide adenine dinucleotide (NAD) Hydride ion (H ) Alcohol dehydrogenase... [Pg.430]

Inflammatory cell phenomenon are also contributors to lipid peroxidation. Activated neutrophils may adhere to damaged endothelium and amplify traumatic, ischaemic or ischaemia-reperfiision injury. Many cyclooxygenase products of the metabolism of atachidonic acid modulate the inflammatory responses of cells. Macrophages, neutrophils and microglia are important sources of reactive oxygen at the injury site. When activated, they produce a respiratory burst that is traced to activated nicotinamide adenine dinucleotide (NADPH/NADH) oxidase. [Pg.273]

Figure 18.2 Summary of respiratory energy flows. Foods ate converted into the reduced form of nicotinamide adenine dinucleotide (NADH), a strong reductant, which is the most reducing of the respiratory electron carriers (donors). Respiration can he based on a variety of terminal oxidants, such as O2, nitrate, or fumarate. Of those, O2 is the strongest, so that aerobic respiration extracts the largest amount of free energy from a given amount of food. In aerobic respiration, NADH is not oxidized directly by O2 rather, the reaction proceeds through intermediate electron carriers, such as the quinone/quinol couple and cytochrome c. The most efficient respiratory pathway is based on oxidation of ferrocytochrome c (Fe ) with O2 catalyzed by cytochrome c oxidase (CcO). Of the 550 mV difference between the standard potentials of c)Tochrome c and O2, CcO converts 450 mV into proton-motive force (see the text for further details). Figure 18.2 Summary of respiratory energy flows. Foods ate converted into the reduced form of nicotinamide adenine dinucleotide (NADH), a strong reductant, which is the most reducing of the respiratory electron carriers (donors). Respiration can he based on a variety of terminal oxidants, such as O2, nitrate, or fumarate. Of those, O2 is the strongest, so that aerobic respiration extracts the largest amount of free energy from a given amount of food. In aerobic respiration, NADH is not oxidized directly by O2 rather, the reaction proceeds through intermediate electron carriers, such as the quinone/quinol couple and cytochrome c. The most efficient respiratory pathway is based on oxidation of ferrocytochrome c (Fe ) with O2 catalyzed by cytochrome c oxidase (CcO). Of the 550 mV difference between the standard potentials of c)Tochrome c and O2, CcO converts 450 mV into proton-motive force (see the text for further details).
Nicotinamide Adenine Dinucleotide (NAD+) Alcohol dehydrogenase, Lactate oxidase... [Pg.332]

The answers are 34-g, 35-a, 36-d. (Katzung, pp 53—56J There are four major components to the mixed-function oxidase system (1) cytochrome P450, (2) NAD PH, or reduced nicotinamide adenine dinucleotide phosphate, (3) NAD PH—cytochrome P450 reductase, and (4) molecular oxygen. The figure that follows shows the catalytic cycle for the reactions dependent upon cytochrome P450. [Pg.54]

A number of autoxidation reactions exhibit exotic kinetic phenomena under specific experimental conditions. One of the most widely studied systems is the peroxidase-oxidase (PO) oscillator which is the only enzyme reaction showing oscillation in vitro in homogeneous stirred solution. The net reaction is the oxidation of nicotinamide adenine dinucleotide (NADH), a biologically vital coenzyme, by dioxygen in a horseradish peroxidase enzyme (HRP) catalyzed process ... [Pg.449]

Hexachloroethane is metabolized by the mixed function oxidase system by way of a two-step reduction reaction involving cytochrome P-450 and either reduced nicotinamide adenine dinucleotide phosphate (NADPH) or cytochrome b5 as an electron donor. The first step of the reduction reaction results in the formation of the pentachloroethyl free radical. In the second step, tetrachloroethene is formed as the primary metabolite. Two chloride ions are released. Pentachloroethane is a minor metabolic product that is generated from the pentachloroethyl free radical. [Pg.72]

Curnutte, J. T. (1985). Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J. Clin. Invest. 75, 1740-3. [Pg.184]

Cassatella, M. A., Hartman, L., Perussia, B., Trinchieri, G. (1989). Tumor necrosis factor and immune interferon synergistically induce cytochrome b.245 heavy-chain gene expression and nicotinamide-adenine dinucleotide phosphate hydrogenase oxidase in human leukemic myeloid cells. J. Clin. Invest. 83,1570-9. [Pg.260]

Cumutte, J. T., Berkow, R. L., Roberts, R. L., Shurin, S. B., Scott, P. J. (1988). Chronic granulomatous disease due to a defect in the cytosolic factor required for nicotinamide adenine dinucleotide phosphate oxidase activation. J. Clin. Invest. 81,606-10. [Pg.286]

Boron also appears to be involved in redox metabolism in cell membranes. Boron deficiency was shown to inhibit membrane H -ATPase isolated from plant roots, and H -ATPase-associated proton secretion is decreased in boron-deficient cell cultures [71]. Other studies show an effect of boron on membrane electron transport reactions and the stimulation of plasma reduced nicotinamide adenine dinucleotide (NADH) oxidase upon addition of boron to cell cultures [72, 73]. NADH oxidase in plasma membrane is believed to play a role in the reduction of ascorbate free radical to ascorbate [74]. One theory proposes that, by stimulating NADH oxidase to keep ascorbate reduced at the cell wall-membrane interface, the presence of boron is important in... [Pg.22]

Cholesterol is transported into the mitochondria of steroidogenic tissue, where side chain cleavage is carried out. In common with other mixed-function oxidase systems, the cholesterol side chain cleavage requires reduced nicotinamide-adenine dinucleotide phosphate... [Pg.687]

Enzymes responsible for metabolism are located at various subcellular sites, for example the cytosol, mitochondria and smooth endoplasmic reticulum. However, it is enzymes derived from endoplasmic reticulum, called mixed function oxidases or monooxygenases , which have been most intensely studied in the past two or three decades. These enzyme systems, which utilize a family of haemoprotein cytochromes, or P-450 as terminal oxidases, require molecular oxygen and reduced nicotinamide adenine dinucleotide phosphate (NADPH) for activity. The overall stoichiometry of the reactions catalyzed by these enzymes is normally represented by equation (1). [Pg.224]

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an enzymatic complex considered the most important source of superoxide... [Pg.203]

All potentials vs. screen-printed Ag/AgCl pseudo-reference, except values marked with asterisk ( ), which are vs. Ag/3M AgCl double-junction reference electrode, and values marked with dagger CfO, which are vs. saturated calomel. Abbreviations CoPC cobalt phthalocyanine, SPCE screen-printed carbon electrode, GOD glucose oxidase, MWCNT multi-walled carbon nanotubes, NAD nicotinamide adenine dinucleotide, PQQ pyrroloquinoline quinone, FIA flow injection analysis. [Pg.501]

The hepatic endoplasmic reticulum possesses oxidative enzymes called mixed-function oxidases or monooxygenase with a specific requirement for both molecular oxygen and a reduced concentration of nicotinamide adenine dinucleotide phosphate (NADPH). Essential in the mixed-function oxidase system is P-450 (Figure 1.12). The primary electron donor is NADPH, whereas the electron transfer involved P-450, a flavoprotein. The presence of a heat-stable fraction is necessary for the operation of the system. [Pg.18]

Conditions for cytosolic incubations depend on the aim of the assay e.g. to cover specific enzymatic activity present in the cytosol. For this purpose it is essential to fortify the incubation medium with the specific cofactor for the reaction-if needed (Ekins 1999). (J> -Nicotinamide adenine dinucleotide (NAD) is needed for alcohol and aldehyde dehydrogenases, flavin adenine dinucleotide (FAD) for polyamine oxidase, P-nicotinamide adenine dinucleotide phosphate (NADPH) for Dihydropyrimidine dehydrogenase. Phase II reactions depend on PAPS (sulfotransferases,... [Pg.515]


See other pages where Nicotinamide adenine dinucleotide oxidase is mentioned: [Pg.865]    [Pg.585]    [Pg.279]    [Pg.86]    [Pg.72]    [Pg.95]    [Pg.602]    [Pg.44]    [Pg.388]    [Pg.274]    [Pg.1]    [Pg.248]    [Pg.79]    [Pg.338]    [Pg.348]    [Pg.318]    [Pg.135]    [Pg.187]    [Pg.574]    [Pg.145]    [Pg.213]    [Pg.62]    [Pg.153]    [Pg.290]    [Pg.509]    [Pg.509]    [Pg.152]   
See also in sourсe #XX -- [ Pg.404 , Pg.452 , Pg.459 ]




SEARCH



Dinucleotide

NADP (nicotinamide adenine dinucleotide oxidase

Nicotinamide adenine

Nicotinamide adenine dinucleotid

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide phosphate NADPH) oxidase

Nicotinamide adenine dinucleotide phosphate oxidase

Nicotinamide adenine dinucleotides

Nicotinamide dinucleotide

Nicotinamide oxidase

© 2024 chempedia.info