Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nicotinamide adenine dinucleotide NADH

Similar hydride reductions occur in nature using NADH in the presence of enzymes. [Pg.125]


Insects poisoned with rotenone exhibit a steady decline ia oxygen consumption and the iasecticide has been shown to have a specific action ia interfering with the electron transport iavolved ia the oxidation of reduced nicotinamide adenine dinucleotide (NADH) to nicotinamide adenine dinucleotide (NAD) by cytochrome b. Poisoning, therefore, inhibits the mitochondrial oxidation of Krebs-cycle iatermediates which is catalysed by NAD. [Pg.270]

Fig. 9. Glucuionic acid pathway. NAD = nicotinamide-adenine dinucleotide NADH = reduced nicotinamide—adenine dinucleotide ... Fig. 9. Glucuionic acid pathway. NAD = nicotinamide-adenine dinucleotide NADH = reduced nicotinamide—adenine dinucleotide ...
Oxidation of P-nicotinamide adenine dinucleotide (NADH) to NAD+ has attracted much interest from the viewpoint of its role in biosensors reactions. It has been reported that several quinone derivatives and polymerized redox dyes, such as phenoxazine and phenothiazine derivatives, possess catalytic activities for the oxidation of NADH and have been used for dehydrogenase biosensors development [1, 2]. Flavins (contain in chemical structure isoalloxazine ring) are the prosthetic groups responsible for NAD+/NADH conversion in the active sites of some dehydrogenase enzymes. Upon the electropolymerization of flavin derivatives, the effective catalysts of NAD+/NADH regeneration, which mimic the NADH-dehydrogenase activity, would be synthesized [3]. [Pg.363]

Reduced nicotinamide adenine dinucleotide, NADH, acts as the biological reducing agent. [Pg.932]

Polypyrrole shows catalytic activity for the oxidation of ascorbic acid,221,222 catechols,221 and the quinone-hydroquinone couple 223 Polyaniline is active for the quinone-hydroquinone and Fe3+/Fe2+ couples,224,225 oxidation of hydrazine226 and formic acid,227 and reduction of nitric acid228 Poly(p-phenylene) is active for the oxidation of reduced nicotinamide adenine dinucleotide (NADH), catechol, ascorbic acid, acetaminophen, and p-aminophenol.229 Poly(3-methylthiophene) catalyzes the electrochemistry of a large number of neurotransmitters.230... [Pg.588]

Reduced nicotinamide-adenine dinucleotide (NADH) plays a vital role in the reduction of oxygen in the respiratory chain [139]. The biological activity of NADH and oxidized nicotinamideadenine dinucleotide (NAD ) is based on the ability of the nicotinamide group to undergo reversible oxidation-reduction reactions, where a hydride equivalent transfers between a pyridine nucleus in the coenzymes and a substrate (Scheme 29a). The prototype of the reaction is formulated by a simple process where a hydride equivalent transfers from an allylic position to an unsaturated bond (Scheme 29b). No bonds form between the n bonds where electrons delocalize or where the frontier orbitals localize. The simplified formula can be compared with the ene reaction of propene (Scheme 29c), where a bond forms between the n bonds. [Pg.50]

Zinc-containing alcohol dehydrogenases take up two electrons and a proton from alcohols in the form of a hydride. The hydride acceptor is usually NAD(P) (the oxidized form of nicotinamide adenine dinucleotide (NADH) or its phosphorylated derivative, NADPH). Several liver alcohol dehydrogenases have been structurally characterized, and Pig. 17.8 shows the environment around the catalytic Zn center and the bound NADH cofactor. [Pg.610]

Figure 18.2 Summary of respiratory energy flows. Foods ate converted into the reduced form of nicotinamide adenine dinucleotide (NADH), a strong reductant, which is the most reducing of the respiratory electron carriers (donors). Respiration can he based on a variety of terminal oxidants, such as O2, nitrate, or fumarate. Of those, O2 is the strongest, so that aerobic respiration extracts the largest amount of free energy from a given amount of food. In aerobic respiration, NADH is not oxidized directly by O2 rather, the reaction proceeds through intermediate electron carriers, such as the quinone/quinol couple and cytochrome c. The most efficient respiratory pathway is based on oxidation of ferrocytochrome c (Fe ) with O2 catalyzed by cytochrome c oxidase (CcO). Of the 550 mV difference between the standard potentials of c)Tochrome c and O2, CcO converts 450 mV into proton-motive force (see the text for further details). Figure 18.2 Summary of respiratory energy flows. Foods ate converted into the reduced form of nicotinamide adenine dinucleotide (NADH), a strong reductant, which is the most reducing of the respiratory electron carriers (donors). Respiration can he based on a variety of terminal oxidants, such as O2, nitrate, or fumarate. Of those, O2 is the strongest, so that aerobic respiration extracts the largest amount of free energy from a given amount of food. In aerobic respiration, NADH is not oxidized directly by O2 rather, the reaction proceeds through intermediate electron carriers, such as the quinone/quinol couple and cytochrome c. The most efficient respiratory pathway is based on oxidation of ferrocytochrome c (Fe ) with O2 catalyzed by cytochrome c oxidase (CcO). Of the 550 mV difference between the standard potentials of c)Tochrome c and O2, CcO converts 450 mV into proton-motive force (see the text for further details).
It is well known that the selective transport of ions through a mitochondrial inner membrane is attained when the oxygen supplied by the respiration oxidizes glycolysis products in mitochondria with the aid of such substances as flavin mononucleotide (FMN), fi-nicotinamide adenine dinucleotide (NADH), and quinone (Q) derivatives [1-3]. The energy that enables ion transport has been attributed to that supplied by electron transport through the membrane due to a redox reaction occurring at the aqueous-membrane interface accompanied by respiration [1-5],... [Pg.489]

The oxidation of reduced jS-nicotinamide adenine dinucleotide (NADH) by quinone derivatives (Q) by has been investigated extensively, since the reaction was considered to be essential in the proton transport and the energy accumulation occurring at the mitochondrial inner membrane [2]. However, most of fundamental work in this field has been done in homogeneous solutions [48-52] though the reaction in living bodies has been believed to proceed at the solution membrane interface. [Pg.500]

Under conditions of copper deficiency, some methanotrophs can express a cytosolic, soluble form of MMO (sMMO) (20-23), the properties of which form the focus of the present review. The sMMO system comprises three separate protein components which have all been purified to homogeneity (24,25). The hydroxylase component, a 251 kD protein, contains two copies each of three subunits in an a 82y2 configuration. The a subunit of the hydroxylase houses the dinuclear iron center (26) responsible for dioxygen activation and for substrate hydroxylation (27). The 38.6 kD reductase contains flavin adenine dinucleotide (FAD) and Fe2S2 cofactors (28), which enable it to relay electrons from reduced nicotinamide adenine dinucleotide (NADH) to the diiron center in the... [Pg.267]

M8. Manabe, J., Arya, R Sumimoto, H., Yubisui, T., Bellingham, A. J Layton, D. M., and Fuku-maki, Y., Two novel mutations in the reduced nicotinamide adenine dinucleotide (NADH)-cy-tochrome b5 reductase gene of a patient with generalized type, hereditary methemoglobinemia. [Pg.46]

Metabolism of trimethylamine oxide in fish muscle involves an enzyme-catalyzed oxidation-reduction reaction. The enzyme responsible for the conversion of trimethylamine oxide to trimethylamine is known as trimethylamine-W-oxide reductase. This enzyme acts on nicotinamide adenine dinucleotide (NADH) and TMAO to produce NAD+, trimethylamine and water (Fig. 13.13.1). TMAO acts as the oxidizing agent and is reduced, while NADH undergoes oxidation as the reducing agent. [Pg.194]

Figure 13.13.1 The reduction of trimethylamine oxide by nicotinamide adenine dinucleotide NADH. Figure 13.13.1 The reduction of trimethylamine oxide by nicotinamide adenine dinucleotide NADH.
Reliable measurements of L-lactate are of great interest in clinical chemistry, the dairy and vine industry, biotechnology, or sport medicine. In particular, blood lactate levels are indicative of various pathological states, including shock, respiratory insufficiencies, and heart and liver diseases. Silica sol-gel encapsulation of the lactate dehydrogenase and its cofactor was employed as a disposable sensor for L-lactate51. The sensor utilized the changes in absorbance or fluorescence from reduced cofactor nicotinamide adenine dinucleotide (NADH) upon exposure to L-lactate. [Pg.365]

A number of autoxidation reactions exhibit exotic kinetic phenomena under specific experimental conditions. One of the most widely studied systems is the peroxidase-oxidase (PO) oscillator which is the only enzyme reaction showing oscillation in vitro in homogeneous stirred solution. The net reaction is the oxidation of nicotinamide adenine dinucleotide (NADH), a biologically vital coenzyme, by dioxygen in a horseradish peroxidase enzyme (HRP) catalyzed process ... [Pg.449]

A final optical application deals with the measurement of intracellular nicotinamide adenine dinucleotide (NADH) by fluorescence [77], giving information about the physiological status of wastewater treatment plant biomass. This indirect method could be envisaged for toxicity estimation. [Pg.266]

NADH. See also Nicotinamide adenine dinucleotide (NADH) biosensors for, 3 797 requirement as cofactor, 3 672-673 Nadic group, in creating polyimide thermosetting resins, 20 275... [Pg.608]

Nicotinamide adenine dinucleotide (NADH), 24 348. See also NADH Nicotinamide adenine dinucleotide... [Pg.621]

When cyanide blocks oxidative metabolism in mitochondria, cells shift their metabolism and enhanced glucose utilization occurs. One consequence of this altered metabolic pattern is accumulation of nicotinamide adenine dinucleotide (NADH). NADH is a powerful stimulant of calcium mobilization from cell stores through "inositol triphosphate receptors." Elevated calcium damages cells. Increase in cellular NADH, therefore, is an important event in the toxic action of cyanide (Kaplin et al. 1996). [Pg.89]

Isotope effects have been used to determine whether the hydride transfer from the enzyme cofactor nicotinamide-adenine dinucleotide (NADH) (reaction (43)) takes place as a hydride ion transfer in a single kinetic step or in a multistep reaction via an uncoupled electron and hydrogen transfer. [Pg.213]

To facilitate its application in organic synthesis, we developed a lyophilized cell powder of Sphingomonas sp. HXN-200 as a biohydroxylation catalyst. Hydro-xylation of A-benzyl-piperidine with such catalyst powder showed 85% of the activity of a similar hydroxylation with frozen/thawed cells, shown in Figure 15.6. The fact that rehydrated lyophilized cells are able to carry out such a reduced nicotinamide adenine dinucleotide (NADH)-dependent hydroxylation indicates that these cells are capable of retaining and regenerating NADH at rates equal to or exceeding the rate of hydroxylation. To our knowledge, this is the first example of the use of lyophilized cells for a cofactor-dependent hydroxylation. [Pg.287]

Autofluorescence of cells often complicates the studies with fluorescence microscopy (especially the application of green fluorescent substances). There are different reasons for the occurrence of this phenomenon (157) (i) the fluorescent pigment lipofuscin, which settles with rising age in the cytoplasm of cells (ii) cell culture medium, which often contains phenol red that increases autofluorescence (iii) endogen substances such as flavin coenzymes [flavin-adenine dinucleotide (FDA), flavin mononucleotide (FMN) absorp-tion/emission 450/515nm], pyridine nucleotides [reduced nicotinamide adenine dinucleotide (NADH) absorption/emission 340/460nm] or porphyrine (iv) substances taken up by cells (as mentioned above filipin) and (v) preparation of the cells fixation with glutaraldehyde increases autofluorescence. [Pg.370]

The nicotinamide coenzymes nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) are associated with a wide variety of enzymes involved in oxidation-reduction reactions (Fig. 21). NADH is typically involved in oxidative catabolic reactions, while NADPH is primarily used in biosynthetic pathways [58]. [Pg.29]


See other pages where Nicotinamide adenine dinucleotide NADH is mentioned: [Pg.393]    [Pg.724]    [Pg.3]    [Pg.229]    [Pg.118]    [Pg.251]    [Pg.2]    [Pg.3]    [Pg.212]    [Pg.82]    [Pg.579]    [Pg.95]    [Pg.243]    [Pg.227]    [Pg.11]    [Pg.86]    [Pg.219]    [Pg.306]    [Pg.319]    [Pg.197]    [Pg.4]    [Pg.385]    [Pg.238]   
See also in sourсe #XX -- [ Pg.64 ]

See also in sourсe #XX -- [ Pg.49 , Pg.86 ]

See also in sourсe #XX -- [ Pg.195 ]

See also in sourсe #XX -- [ Pg.121 , Pg.196 ]

See also in sourсe #XX -- [ Pg.547 , Pg.702 , Pg.709 , Pg.711 ]

See also in sourсe #XX -- [ Pg.49 ]

See also in sourсe #XX -- [ Pg.566 ]

See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.732 ]

See also in sourсe #XX -- [ Pg.49 ]

See also in sourсe #XX -- [ Pg.307 ]




SEARCH



Dinucleotide

NADH

NADH, Reduced nicotinamide adenine dinucleotide

NADH—See Nicotinamide adenine dinucleotide

Nicotinamide adenine

Nicotinamide adenine dinucleotid

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide (NAD,NADH

Nicotinamide adenine dinucleotide hydride NADH)

Nicotinamide adenine dinucleotide hydride NADH/NADPH)

Nicotinamide adenine dinucleotide, reduced form NADH)

Nicotinamide adenine dinucleotide. See NAD*, NADH

Nicotinamide adenine dinucleotides

Nicotinamide adenine dinucleotides NAD/NADH)

Nicotinamide dinucleotide

Nicotinamides (NADH

© 2024 chempedia.info