Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel solvent extraction

Production of MgO and regeneration of HCI by pyrohydroiysis of bleed stream from the magnesium chloride containing raffinate from the nickel solvent extraction stage. The resulting MgO can be used for pH control as well as precipitation of Ni and Co compounds from their respective preg strip solutions. Excess MgO produced can be sold. [Pg.103]

In addition, solvent extraction is appHed to the processing of other metals for the nuclear industry and to the reprocessing of spent fuels (see Nuclearreactors). It is commercially used for the cobalt—nickel separation prior to electrowinning in chloride electrolyte. Both extraction columns and mixer-settlers are in use. [Pg.172]

The chain-growth catalyst is prepared by dissolving two moles of nickel chloride per mole of bidentate ligand (BDL) (diphenylphosphinobenzoic acid in 1,4-butanediol). The mixture is pressurized with ethylene to 8.8 MPa (87 atm) at 40°C. Boron hydride, probably in the form of sodium borohydride, is added at a molar ratio of two borohydrides per one atom of nickel. The nickel concentration is 0.001—0.005%. The 1,4-butanediol is used to solvent-extract the nickel catalyst after the reaction. [Pg.439]

The mixture can be separated by distillation. The primary phosphine is recycled for use ia the subsequent autoclave batch, the secondary phosphine is further derivatized to the corresponding phosphinic acid which is widely employed ia the iadustry for the separation of cobalt from nickel by solvent extraction. With even more hindered olefins, such as cyclohexene [110-83-8] the formation of tertiary phosphines is almost nondetectable. [Pg.319]

Solvent Extraction Reagents. Solvent extraction is a solution purification process that is used extensively in the metallurgical and chemical industries. Both inorganic (34,35) and organic (36) solutes are recovered. The large commercial uses of phosphine derivatives in this area involve the separation of cobalt [7440-48-4] from nickel [7440-02-0] and the recovery of acetic acid [61-19-7] and uranium [7440-61-1]. [Pg.320]

Metal Extraction. As with other carboxyhc acids, neodecanoic acid can be used in the solvent extraction of metal ions from aqueous solutions. Recent appHcations include the extraction of zinc from river water for deterrnination by atomic absorption spectrophotometry (105), the coextraction of metals such as nickel, cobalt, and copper with iron (106), and the recovery of copper from ammoniacal leaching solutions (107). [Pg.106]

Vanadium and nickel are poisons to many catalysts and should be reduced to very low levels. Most of the vanadium and nickel compounds are concentrated in the heavy residues. Solvent extraction processes are used to reduce the concentration of heavy metals in petroleum residues. [Pg.19]

The liquid-liquid extraction (solvent extraction) process was developed about 50 years ago and has found wide application in the hydrometallurgy of rare refractory and rare earth metals. Liquid-liquid extraction is used successfully for the separation of problematic pairs of metals such as niobium and tantalum, zirconium and hafnium, cobalt and nickel etc. Moreover, liquid-liquid extraction is the only method available for the separation of rare earth group elements to obtain individual metals. [Pg.267]

Spectrophotometric methods may often be applied directly to the solvent extract utilising the absorption of the extracted species in the ultraviolet or visible region. A typical example is the extraction and determination of nickel as dimethylglyoximate in chloroform by measuring the absorption of the complex at 366 nm. Direct measurement of absorbance may also be made with appropriate ion association complexes, e.g. the ferroin anionic detergent system, but improved results can sometimes be obtained by developing a chelate complex after extraction. An example is the extraction of uranyl nitrate from nitric acid into tributyl phosphate and the subsequent addition of dibenzoylmethane to the solvent to form a soluble coloured chelate. [Pg.174]

Theory. Conventional anion and cation exchange resins appear to be of limited use for concentrating trace metals from saline solutions such as sea water. The introduction of chelating resins, particularly those based on iminodiacetic acid, makes it possible to concentrate trace metals from brine solutions and separate them from the major components of the solution. Thus the elements cadmium, copper, cobalt, nickel and zinc are selectively retained by the resin Chelex-100 and can be recovered subsequently for determination by atomic absorption spectrophotometry.45 To enhance the sensitivity of the AAS procedure the eluate is evaporated to dryness and the residue dissolved in 90 per cent aqueous acetone. The use of the chelating resin offers the advantage over concentration by solvent extraction that, in principle, there is no limit to the volume of sample which can be used. [Pg.212]

The metals are obtained from the metallic phase of the sulphide matte or the anode slime from electrolytic refining of nickel. In the traditional process for the platinum metals, their separation was facilitated by their solubility in aqua regia and convertibility into PdCl - or PtCl - salts. Nowadays, substantial amounts are obtained using solvent extraction. [Pg.175]

Several extraction techniques have also been described that use enzymatic or chemical reactions to improve extraction efficiency. A technique that has been used to increase the overall recovery of the marker residue is enzymatic hydrolysis to convert specific phase II metabolites (glucuronides or sulfates) back into the parent residue. Cooper etal used a glucuronidase to increase 10-fold the concentration of chloramphenicol residues in incurred tissue. As an example of a chemical reaction, Moghaddam et al. used Raney nickel to reduce thioether bonds between benomyl and polar cellular components, and as a result achieved a substantially improved recovery over conventional solvent extraction. In choosing to use either of these approaches, thorough characterization of the metabolism in the tissue sample must be available. [Pg.306]

Solvent extraction is often applied to separate two chemically similar metals such as nickel/ cobalt, adjacent rare earths, niobium/tantalum, zirconium/hafnium, etc. For the purpose of elaboration, the example of the separation of two chemically similar elements such as zirconium and hafnium from their nitrate solution, using TBP as an extractant is considered. The solvent extraction process in this case is chemically constant (K) is given by ... [Pg.521]

V. H. Aprahamian and D. G. Demopoulos, The Solution Chemistry and Solvent Extraction Behaviour of copper, iron, nickel, zinc, lead, tin, Ag, arsenic, antimony, bismuth, selenium and tellurium in Acid Chloride Solutions Reviewed from the Standpoint of PGM Refining, Mineral Processing and Extractive Metallurgy Review, Vol. 14, p. 143,1995. [Pg.579]

Sole, K. C. Cole, P. M. Purification of nickel by solvent extraction. Ion Exch. Solvent Extr. 2002, 15, 143-195. [Pg.802]

Preston, J. S. du Preez, A. C. Separation of nickel and calcium by solvent extraction using mixtures of carboxylic acids and alkylpyridines. Hydrometallurgy 2000, 58, 239-250. [Pg.803]

Preston, J. S. duPreez, A. C. The solvent extraction of nickel from acidic solutions using synergistic mixtures containing pyridinecarboxylate esters. 2. Systems based on alkylsalicylic acids. J. Chem. Technol. Biotechnol. 1996, 66, 293-299. [Pg.803]

Reddy, B. R. Parija, C. Sarnia, P. Processing of solutions containing nickel and ammonium sulphate through solvent extraction using PC-88A. Hydrometallurgy 1999, 53, 11-17. [Pg.803]

Juang, R. S. Jiang, J. D. Recovery of nickel from a simulated electroplating rinse solution by solvent extraction and liquid surfactant membrane. J. Memhr. Sci. 1995, 100, 163-170. [Pg.803]

Preston, J. S. Solvent extraction of cobalt and nickel by organophosphorus acids. I. Comparison of phosphoric, phosphonic, and phosphinic acid systems. Hydrometallurgy 1982, 9, 115-133. [Pg.804]

Xun, F. Golding, J. A. Solvent extraction of cobalt and nickel in bis(2,4,4-tri-methylpentyl)phosphinic acid, Cyanex-272. Solvent Extr. Ion Exch. 1987, 5, 205-226. [Pg.804]

Nagel, V. Gilmore, M. Scott, S. Bateman pulsed column pilot-plant campaign to extract cobalt from the nickel electrolyte stream at Anglo Platinum s base metal refinery. International Solvent Extraction Conference, Cape Town, South Africa, Mar. 17-21, 2002, pp 970-975. [Pg.804]

Nogueira, C. A. Delmas, F. New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni-Cd batteries by solvent extraction. Hydrometallurgy 1999, 52, 267-287. [Pg.804]

Feather, A. M. Cole, P. M. The separation of cobalt from nickel ammonium sulfate solution by solvent extraction. Value Adding through Solvent Extraction, [Papers presented at ISEC 96], Melbourne, Mar. 19-23, 1996, 1, 511-516. [Pg.804]


See other pages where Nickel solvent extraction is mentioned: [Pg.296]    [Pg.101]    [Pg.296]    [Pg.101]    [Pg.167]    [Pg.565]    [Pg.201]    [Pg.173]    [Pg.694]    [Pg.417]    [Pg.99]    [Pg.121]    [Pg.186]    [Pg.194]    [Pg.246]    [Pg.487]    [Pg.511]    [Pg.529]    [Pg.571]    [Pg.785]    [Pg.803]    [Pg.803]    [Pg.803]   
See also in sourсe #XX -- [ Pg.88 ]




SEARCH



Nickel extraction

Nickel solvents

Oximes solvent extraction, copper and nickel

© 2024 chempedia.info