Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel amino acid complexes

Diastereoselective preparation of a-alkyl-a-amino acids is also possible using chiral Schiff base nickel(II) complexes of a-amino acids as Michael donors. The synthetic route to glutamic acid derivatives consists of the addition of the nickel(II) complex of the imine derived from (.S )-,V-[2-(phenylcarbonyl)phenyl]-l-benzyl-2-pyrrolidinecarboxamide and glycine to various activated olefins, i.e., 2-propenal, 3-phenyl-2-propenal and a,(f-unsaturated esters93- A... [Pg.964]

Derived from the German word meaning devil s copper, nickel is found predominantly in two isotopic forms, Ni (68% natural abundance) and Ni (26%). Ni exists in four oxidation states, 0, I, II, III, and IV. Ni(II), which is the most common oxidation state, has an ionic radius of —65 pm in the four-coordinate state and —80 pm in the octahedral low-spin state. The Ni(II) aqua cation exhibits a pAa of 9.9. It forms tight complexes with histidine (log Af = 15.9) and, among the first-row transition metals, is second only to Cu(II) in its ability to complex with acidic amino acids (log K( = 6-7 (7). Although Ni(II) is most common, the paramagnetic Ni(I) and Ni(III) states are also attainable. Ni(I), a (P metal, can exist only in the S = state, whereas Ni(lll), a cT ion, can be either S = or S =. ... [Pg.284]

When we first contemplated thermochemical products available from Glu, a search of the literature revealed no studies expressly directed at hydrogenation to a specific product. Indeed, the major role that Glu plays in hydrogenation reactions is to act as an enantioselectivity enhancer (17,18). Glu (or a number of other optically active amino acids) is added to solutions containing Raney nickel, supported nickel, palladium, or ruthenium catalysts and forms stereoselective complexes on the catalyst surface, leading to enantioselective hydrogenation of keto-groups to optically active alcohols. Under the reaction conditions used, no hydrogenation of Glu takes place. [Pg.157]

The yellow ink jet dyes (and pigments) are metal-free azo dyes, such as Cl Direct Yellow 132 and Cl Acid Yellow 23 (Tartrazine).48,49 Most of the magentas are azo dyes derived from H-acid (l-amino-8-naphthol-3,6-disulfonic acid), such as (62), and xanthenes, such as Cl Acid Red 52 and Cl Acid Red 289.48,49 Where high lightfastness is a requirement, a copper complex azo dye, Cl Reactive Red 23 (63), is used. However, such dyes are dull (see Section 9.12.3.2). Nickel complex PAQ dyes, such as (22), are claimed to be brighter and to have similar high lightfastness... [Pg.570]

It is believed that nickel penetrates the skin and acts as a hapten, complexing with selected peptide and/or amino-acid ligands to distort intercellular or cellular proteins, stimulating a type IV delayed (cell-mediated) hypersensitivity reaction [398]. Nickel water-soluble salts, like nickel chloride and nickel sulphate, are strong sensitizers [213, 215], The chloride induced in sweat is apparently an important factor in dissolving the metallic nickel, permitting the soluble nickel salts to act. [Pg.216]

The next five transition metals iron, cobalt, nickel, copper and zinc are of undisputed importance in the living world, as we know it. The multiple roles that iron can play will be presented in more detail later in Chapter 13, but we can already point out that, with very few exceptions, iron is essential for almost all living organisms, most probably because of its role in forming the amino acid radicals required for the conversion of ribonucleotides to deoxyribonucleotides in the Fe-dependent ribonucleotide reductases. In those organisms, such as Lactobacilli6, which do not have access to iron, their ribonucleotide reductases use a cobalt-based cofactor, related to vitamin B12. Cobalt is also used in a number of other enzymes, some of which catalyse complex isomerization reactions. Like cobalt, nickel appears to be much more extensively utilized by anaerobic bacteria, in reactions involving chemicals such as CH4, CO and H2, the metabolism of which was important... [Pg.8]

Ni" forms square-planar bis-complexes with the amidate anions of L-Val, L-Phe, and L-Pro. The structure of bis(Gly)-bis(imidazole)nickel(ii) has been reported and the configuration around the metal atom is cis-O(carboxyl), cis-N(amine), cis-N(imidazole). Tetra- and penta-peptide complexes of nickel(ii) consume oxygen in neutral solutions as the metal ion catalyses peptide oxidation to give a number of products, including amides of amino-acids and peptides, oxo-acids, and C02- ... [Pg.309]

Brydon and Roberts- added hemolyzed blood to unhemolyzed plasma, analyzed the specimens for a variety of constituents and then compared the values with those in the unhemolyzed plasma (B28). The following procedures were considered unaffected by hemolysis (up to 1 g/100 ml hemoglobin) urea (diacetyl monoxime) carbon dioxide content (phe-nolphthalein complex) iron binding capacity cholesterol (ferric chloride) creatinine (alkaline picrate) uric acid (phosphotungstate reduction) alkaline phosphatase (4-nitrophenyl phosphate) 5 -nucleotidase (adenosine monophosphate-nickel) and tartrate-labile acid phosphatase (phenyl phosphate). In Table 2 are shown those assays where increases were observed. The hemolysis used in these studies was equivalent to that produced by the breakdown of about 15 X 10 erythrocytes. In the bromocresol green albumin method it has been reported that for every 100 mg of hemoglobin/100 ml serum, the apparent albumin concentration is increased by 100 mg/100 ml (D12). Hemolysis releases some amino acids, such as histidine, into the plasma (Alb). [Pg.5]

Nickel that is absorbed is excreted primarily in the urine. In the urine, nickel is primarily associated with low molecular weight complexes that have free amino acids as indicated by the ninhydrin reaction (Sunderman and Oskarsson 1991). In humans nickel is also eliminated in hair, skin, milk, and sweat. [Pg.116]

Hayashi et al.74 described a process of kinetic resolution in the coupling of Grignard reagents R Mgx (having a chiral center at the point of attachment to the metal) with various alkenyl halides under the influence of chiral phosphine-nickel complexes. Chiral amino acid derivatives (35) were used as ligands. [Pg.178]

In an effort to introduce C2 symmetry into nickel complexes for their application in catalysis of asymmetric epoxidation, a series of oxocyclam analogues derived from amino acids 34 were synthesized. They did not react in the presence of PhIO as oxidant. However, they showed enhanced reactivity with NaOCl as the terminal oxidant under phase-... [Pg.123]

Several nickel(II) complexes have been reported with Schiff bases derived from the condensation of salicylaldehyde and various amino acids. The structures of the complexes were investigated by means of electronic and NMR spectra as well as X-ray crystallography.2336-2341 Recently the X-ray structure of complex (321), prepared by the reaction of pyridoxal-HCl, o-phospho-DL-threonine and N NOsVfiHaO at pH 5, has been reported.2341... [Pg.196]

Besides the complexes with the various Schiff bases discussed in Sections 50.5.8.1.i-iv and with amino acids (Section 50.5.8.4.ii), nickel(II) complexes containing N,0 chelates amount to hundreds. It is possible that molecules containing every conceivable bridging chain between the N and O donor atoms have been investigated as ligands towards nickel(II). Almost all of these complexes exhibit either square planar or octahedral coordination. [Pg.214]

The sexidentate amino acid edta4- forms a high-spin nickel(II) complex which can be oxidized to a tetragonally compressed nickel(III)... [Pg.264]


See other pages where Nickel amino acid complexes is mentioned: [Pg.102]    [Pg.4518]    [Pg.7204]    [Pg.300]    [Pg.91]    [Pg.101]    [Pg.127]    [Pg.176]    [Pg.176]    [Pg.7]    [Pg.593]    [Pg.298]    [Pg.970]    [Pg.389]    [Pg.37]    [Pg.523]    [Pg.208]    [Pg.298]    [Pg.83]    [Pg.29]    [Pg.106]    [Pg.147]    [Pg.328]    [Pg.303]    [Pg.261]    [Pg.227]    [Pg.219]    [Pg.220]    [Pg.16]    [Pg.24]    [Pg.58]   
See also in sourсe #XX -- [ Pg.219 , Pg.221 , Pg.290 ]

See also in sourсe #XX -- [ Pg.5 , Pg.290 ]




SEARCH



Amino acid complexes

Amino complex

Nickel complexes amino acid esters

© 2024 chempedia.info