Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel alkyl halides

ARBUZOV MICHAELIS Phosphonale Synihesis Ni catalyzed phosphonate synthesis from phosphites and aryl halides Reaction of alkyl halides with phosphites proceeds without nickel salts... [Pg.5]

Polymers containing 90-98% of a c 5-1,4-structure can be produced using Ziegler-Natta catalyst systems based on titanium, cobalt or nickel compounds in conjuction with reducing agents such as aluminium alkyls or alkyl halides. Useful rubbers may also be obtained by using lithium alkyl catalysts but in which the cis content is as low as 44%. [Pg.290]

Metallocorroles (M = Cu, Ni or Pd) can also be alkylated under the same conditions as the metal-free corroles23,24 to give the N2i-alkylated products together with a small amount of C3 alkylated product ( f = Pd). Allyl halides or bulky alkyl halides react with nickel corroles also at the 3-position. [Pg.671]

Although, as has already been mentioned, under matrix conditions between 10 and 77 K, there is no oxidative addition of a chloroolefin to nickel or palladium atoms (141), it is evident that this is simply a function of reaction and processing conditions, as it has been shown (68) that oxidative addition to C-C or C-H bonds by nickel atoms leads to pseudocomplexes having Ni C H ratios of 2-5 1 2. Klabunde and co-workers investigated the oxidative addition-reactions of palladium atoms with alkyl halides (73) and benzyl chlorides (74). [Pg.158]

Another method for the conversion of alkyl halides to carboxylic esters is treatment of a halide wifh nickel carbonyl, Ni(CO)4, in the presence of an alcohol... [Pg.564]

Experiments have been carried out to mimic the reactions of model systems for coenzyme F430 that is involved in the terminal step in the biosynthesis of methane, and that is able to dechlorinate CCI4 successively to CHCI3 and CH2CI2 (Krone et al. 1989). Nickel(I) isobacteriochlorin anion was generated electrolytically and used to examine the reactions with alkyl halides in dimethylformamide (Helvenston and Castro 1992). The three classes of reaction were the same as those observed with Fe(II) deuteroporphyrin IX that have already been noted. [Pg.27]

Helvenston MC, CE Castro (1992) Nickel(l) octaethylisobacteriochlorin anion. An exceptional nucleophile. Reduction and coupling of alkyl halides by anionic and radical processes. A model for factor F-430. JAm Chem Soc 114 8490-8496. [Pg.42]

It was first suggested that the reaction of an alkyl halide with a nickel(I) Schiff base complex yields an alkylnickel(III) intermediate (Equation (56)). Homolytic cleavage of RBr to give an alkyl radical R and a nickel(II) complex (Equation (57)) or, alternatively, one-electron dissociative reduction leading to R (Equation (58)) are possible pathways.254 A mechanism based on the formation of R via dissociative electron transfer of Ni -salen to RX (Equation (59)) has also been proposed.255... [Pg.487]

The electrochemistry of cobalt-salen complexes in the presence of alkyl halides has been studied thoroughly.252,263-266 The reaction mechanism is similar to that for the nickel complexes, with the intermediate formation of an alkylcobalt(III) complex. Co -salen reacts with 1,8-diiodo-octane to afford an alkyl-bridged bis[Co" (salen)] complex.267 Electrosynthetic applications of the cobalt-salen catalyst are homo- and heterocoupling reactions with mixtures of alkylchlorides and bromides,268 conversion of benzal chloride to stilbene with the intermediate formation of l,2-dichloro-l,2-diphenylethane,269 reductive coupling of bromoalkanes with an activated alkenes,270 or carboxylation of benzylic and allylic chlorides by C02.271,272 Efficient electroreduc-tive dimerization of benzyl bromide to bibenzyl is catalyzed by the dicobalt complex (15).273 The proposed mechanism involves an intermediate bis[alkylcobalt(III)] complex. [Pg.488]

It is well-established that electroreduced nickel(I) complexes of cyclam and a variety of substituted cyclams add oxidatively to alkyl halides to give alkylnickel(III) complexes in organic solvents,251,276 the lifetime of the carbon-nickel bond governing the overall behavior of the system. However, it was shown that [Ni (tmc)]+ (one-electron reduced form of complex (17) tmc= 1,4,8,11-teramethyl 1,4,8,11-tetraazacyclotetradecane) reacts with alkyl chlorides in aqueous alkaline solution in a one-electron process.277,278... [Pg.488]

Development of new methodologies for formation of carbon-carbon bonds has been one of the major tasks in organic chemistry. Obviously, organometallic compounds, particularly zinc derivatives, have found great use in such reactions. During the past several years, there have been several significant reports of nickel- and palladium-catalyzed reactions of dialkylzincs and alkylzinc halides with alkyl halides of diverse structure. A detailed account of most of these studies can be found in a recent review by Knochel et al,246... [Pg.405]

The presence of a remote C=C double bond in the alkyl halide was critical saturated analogs underwent nickel-catalyzed halogen-zinc exchange.248 It has been suggested that the double bond coordinates to the nickel atom. As a 7r-acceptor, the C=C bond removes some electron density from the metal, thus facilitating the reductive coupling (Scheme 154).246... [Pg.406]

A cyclization reaction involving a half-formed bridge in which alkyl halide functions interact with (initially) coordinated oxygen atoms is illustrated by [2.9] (Kluiber Sasso, 1970). The X-ray structure of the red paramagnetic nickel complex (65) indicates that the macrocycle coordi-... [Pg.31]

Catalytic processes based on the use of electrogenerated nickel(O) bipyridine complexes have been a prominent theme in the laboratories of Nedelec, Perichon, and Troupel some of the more recent work has involved the following (1) cross-coupling of aryl halides with ethyl chloroacetate [143], with activated olefins [144], and with activated alkyl halides [145], (2) coupling of organic halides with carbon monoxide to form ketones [146], (3) coupling of a-chloroketones with aryl halides to give O -arylated ketones [147], and (4) formation of ketones via reduction of a mixture of a benzyl or alkyl halide with a metal carbonyl [148]. [Pg.229]

A more efficient method combining the use of a sacrificial anode and the catalysis by nickel complexes was reported recently. Optimal reaction conditions were found to minimize the unwanted homo-couplings, by slowly adding the most reactive reagent, i.e., the activated alkyl halide, and by running the electrolyses at 60-80 °C. The method was applied to the cross-coupling between arylhalides and either a-chloroesters (Table 4) [58,59], ot-chloroketones... [Pg.151]

Apart from the electrocarbonylation reactions of organic halides described in Sect. 6, other Ni-catalyzed reactions leading to ketones have been reported. Thus the electroreductive coupling between acylchlorides and alkyl halides, catalyzed by NiBr2bpy leads to unsymmetrical ketones [129]. Recently acylchlorides have been converted to symmetrical ketones in an undivided cell fitted with a nickel or stainless steel anode. In this reaction the active metallic species... [Pg.168]

Cross coupling between an aryl halide and an activated alkyl halide, catalysed by the nickel system, is achieved by controlling the rate of addition of the alkyl halide to the reaction mixture. When the aryl halide is present in excess, it reacts preferentially with the Ni(o) intermediate whereas the Ni(l) intermediate reacts more rapidly with an activated alkyl halide. Thus continuous slow addition of the alkyl halide to the electrochemical cell already charged with the aryl halide ensures that the alkyl-aryl coupled compound becomes the major product. Activated alkyl halides include benzyl chloride, a-chloroketones, a-chloroesters and amides, a-chloro-nitriles and vinyl chlorides [202, 203, 204], Asymmetric induction during the coupling step occurs with over 90 % distereomeric excess from reactions with amides such as 62, derived from enantiomerically pure (-)-ephedrine, even when 62 is a mixture of diastereoisomcrs prepared from a racemic a-chloroacid. Metiha-nolysis of the amide product affords the chiral ester 63 and chiral ephedrine is recoverable [205]. [Pg.140]

Steric constraints dictate that reactions of organohalides catalysed by square planar nickel complexes cannot involve a cw-dialkyl or diaryl Ni(iii) intermediate. The mechanistic aspects of these reactions have been studied using a macrocyclic tetraaza-ligand [209] while quantitative studies on primary alkyl halides used Ni(n)(salen) as catalyst source [210]. One-electron reduction affords Ni(l)(salen) which is involved in the catalytic cycle. Nickel(l) interacts with alkyl halides by an outer sphere single electron transfer process to give alkyl radicals and Ni(ii). The radicals take part in bimolecular reactions of dimerization and disproportionation, react with added species or react with Ni(t) to form the alkylnickel(n)(salen). Alkanes are also fonned by protolysis of the alkylNi(ii). [Pg.141]

Formation of five-coordinate nickel intermediates via oxidative addition of alkyl halides has been reported (33). This type of... [Pg.73]

Generally, smaller particles are obtained with polar, more highly solvating solvents. However, these solvents do not necessarily yield the most active metal slurries. The reactivities vary, and the metal slurries can be fine tuned somewhat for use in specific types of reactions. For example, nickel particles from pentane are very active as hydrogenation catalysts, whereas nickel particles from THF are not active as hydrogenation catalysts but are very active in alkyl halide reactions. [Pg.79]

Recently, this reaction has been extensively studied since it is currently the only method to couple aryl Grignard reagents with secondary alkyl halides Indeed, secondary aUtyl halides do not react under palladium or nickel catalysis . On the other hand, let us recall that the coupling of secondary alkyl Grignard reagents with aryl halides leads to poor results (see above). [Pg.615]

Arylzinc species prepared via the sacrificial anode process and from aryl halides in the presence of a nickel 2,2 -bipyridine, as already reported in Section . .1, were found totally unreactive towards common electrophiles such as aldehydes, carboxylic anhydrides or activated alkyl halides. However, they react with some electrophiles when they are activated by the presence of a catalytic amount of copper salts (10 mol% Cul) together with tetramethylethylene diamine (1MEDA) as described by Knochel and Singer on the ArZnX—CuCN metal exchange47 or when the reaction is catalyzed by palladium complex. [Pg.776]

Finally, the hybridization of the carbon atom also has a marked effect on its willingness to attach to the transition metal. Allyl or benzyl halides undergo oxidative addition faster than aromatic or vinyl halides. The least reactive are alkyl halides which require the use of nickel(O)9 complexes or highly active catalyst systems.10 If we start from an optically active substrate, then the oxidative addition usually proceeds in a stereoselective manner. [Pg.6]


See other pages where Nickel alkyl halides is mentioned: [Pg.887]    [Pg.128]    [Pg.535]    [Pg.538]    [Pg.541]    [Pg.801]    [Pg.327]    [Pg.207]    [Pg.373]    [Pg.383]    [Pg.409]    [Pg.236]    [Pg.223]    [Pg.122]    [Pg.544]    [Pg.145]    [Pg.137]    [Pg.221]    [Pg.544]    [Pg.560]    [Pg.344]    [Pg.82]    [Pg.129]    [Pg.135]   
See also in sourсe #XX -- [ Pg.477 , Pg.479 , Pg.528 , Pg.533 , Pg.535 , Pg.539 , Pg.540 , Pg.541 ]

See also in sourсe #XX -- [ Pg.163 , Pg.164 , Pg.165 , Pg.166 , Pg.167 ]




SEARCH



Arylation alkyl halides, nickel-catalyzed

Cross alkyl halides, nickel-catalyzed

Nickel alkylation

Nickel alkyls

Nickel catalysts alkyl halide reactions

Nickel catalysts alkyl halides

Nickel halides

Nickel with alkyl halides

Raney nickel alkyl halides

© 2024 chempedia.info