Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel catalyst activities

METHODS OF PREPARATION AND SOME FEATURES OF NICKEL CATALYSTS ACTIVE FOR THE OLIGOMERIZATION OF OLEFINS AND RELATED REACTIONS1... [Pg.107]

Support influence on the catalytic catalytic hydrogenation of 2-Butyne-1 on 20 wtX supported nickel catalysts. activity, 4-diol, and the selectivity, rT, and cis-2-8utene-1, S, in the, 4-diol, rD,... [Pg.272]

As indicated in Table III, an increase in catalyst bed temperature accompanied increased conversion, and part of this increase in conversion undoubtedly resulted from the change in temperature rather than an increase in catalyst activity. The results in Table II show that improved selectivities and higher conversions could be obtained from supported nickel catalysts activated at lower temperatures for longer times. [Pg.193]

Table 2 - Comparison of Ruthenium and Nickel Catalyst Activity in the Hydrogenation of Glucose... Table 2 - Comparison of Ruthenium and Nickel Catalyst Activity in the Hydrogenation of Glucose...
Figure 3.20 Proposed mechanism offer nickel catalysts activation on the surface of clay (reproduced from Ref [23]). Figure 3.20 Proposed mechanism offer nickel catalysts activation on the surface of clay (reproduced from Ref [23]).
Scheme 5.5 Hydrovinylation of styrene with a preformed phosphoramidite chiral nickel catalyst activated by Inlj. Scheme 5.5 Hydrovinylation of styrene with a preformed phosphoramidite chiral nickel catalyst activated by Inlj.
Fig. 14 Proposed mechanism of for nickel catalyst activation on the surface of clay. Reproduced with kind permission from Scott et al. [86]... Fig. 14 Proposed mechanism of for nickel catalyst activation on the surface of clay. Reproduced with kind permission from Scott et al. [86]...
Preparation of MgF2-MgO supports with specified acid-base properties, and their influence on nickel catalyst activity in toluene hydrogenation... [Pg.429]

Sorbitol is manufactured by the reduction of glucose in aqueous solution using hydrogen with a nickel catalyst. It is used in the manufacture of ascorbic acid (vitamin C), various surface active agents, foodstuffs, pharmaceuticals, cosmetics, dentifrices, adhesives, polyurethane foams, etc. [Pg.368]

The catalytic hydrogenation of ethylene occurs on various metal catalysts, such as nickel, including active or skeletal forms produced by dissolving out... [Pg.732]

Nickel catalysts although less expensive than rhodium and platinum are also less active Hydrogenation of arenes m the presence of nickel requires high temperatures (100-200°C) and pressures (100 atm)... [Pg.428]

Recent patent activity suggests that DuPont is developing a new generation of chelating diphosphite—nickel catalysts for this technology which are significantly more active than the monodentate phosphite based catalyst system used for the last two decades (61—64). [Pg.221]

Reactions with Ammonia and Amines. Acetaldehyde readily adds ammonia to form acetaldehyde—ammonia. Diethyl amine [109-87-7] is obtained when acetaldehyde is added to a saturated aqueous or alcohoHc solution of ammonia and the mixture is heated to 50—75°C in the presence of a nickel catalyst and hydrogen at 1.2 MPa (12 atm). Pyridine [110-86-1] and pyridine derivatives are made from paraldehyde and aqueous ammonia in the presence of a catalyst at elevated temperatures (62) acetaldehyde may also be used but the yields of pyridine are generally lower than when paraldehyde is the starting material. The vapor-phase reaction of formaldehyde, acetaldehyde, and ammonia at 360°C over oxide catalyst was studied a 49% yield of pyridine and picolines was obtained using an activated siHca—alumina catalyst (63). Brown polymers result when acetaldehyde reacts with ammonia or amines at a pH of 6—7 and temperature of 3—25°C (64). Primary amines and acetaldehyde condense to give Schiff bases CH2CH=NR. The Schiff base reverts to the starting materials in the presence of acids. [Pg.50]

Naphtha desulfurization is conducted in the vapor phase as described for natural gas. Raw naphtha is preheated and vaporized in a separate furnace. If the sulfur content of the naphtha is very high, after Co—Mo hydrotreating, the naphtha is condensed, H2S is stripped out, and the residual H2S is adsorbed on ZnO. The primary reformer operates at conditions similar to those used with natural gas feed. The nickel catalyst, however, requires a promoter such as potassium in order to avoid carbon deposition at the practical levels of steam-to-carbon ratios of 3.5—5.0. Deposition of carbon from hydrocarbons cracking on the particles of the catalyst reduces the activity of the catalyst for the reforming and results in local uneven heating of the reformer tubes because the firing heat is not removed by the reforming reaction. [Pg.420]

Selectivity is primarily a function of temperature. The amount of by-products tends to increase as the operating temperature is raised to compensate for declining catalyst activity. By-product formation is also influenced by catalyst impurities, whether left behind during manufacture or otherwise introduced into the process. Alkaline impurities cataly2e higher alcohol production whereas acidic impurities, as well as trace iron and nickel, promote heavier hydrocarbon formation. [Pg.276]

Uses. Nickel nitrate is an intermediate in the manufacture of nickel catalysts, especially those that are sensitive to sulfur and therefore preclude the use of the less expensive nickel sulfate. Nickel nitrate also is an intermediate in loading active mass in nickel—alkaline batteries of the sintered plate type (see Batteries, SECONDARY cells). Typically, hot nickel nitrate symp is impregnated in the porous sintered nickel positive plates. Subsequendy, the plates are soaked in potassium hydroxide solution, whereupon nickel hydroxide [12054-48-7] precipitates within the pores of the plate. [Pg.10]

Optical resolution is another method of producing (—)-mentho1 from racemic materials. (A)-Menthol is treated with optically active resolving agents to separate the (—)-mentho1 from the (+)-menthol, which is further processed by racemization over a nickel catalyst and recycled (156). [Pg.423]

The methanation reaction is carried out over a catalyst at operating conditions of 503—723 K, 0.1—10 MPa (1—100 atm), and space velocities of 500—25,000 h . Although many catalysts are suitable for effecting the conversion of synthesis gas to methane, nickel-based catalysts are are used almost exclusively for industrial appHcations. Methanation is extremely exothermic (AT/ qq = —214.6 kJ or —51.3 kcal), and heat must be removed efficiently to minimise loss of catalyst activity from metal sintering or reactor plugging by nickel carbide formation. [Pg.52]

A selective poison is one that binds to the catalyst surface in such a way that it blocks the catalytic sites for one kind of reaction but not those for another. Selective poisons are used to control the selectivity of a catalyst. For example, nickel catalysts supported on alumina are used for selective removal of acetjiene impurities in olefin streams (58). The catalyst is treated with a continuous feed stream containing sulfur to poison it to an exacdy controlled degree that does not affect the activity for conversion of acetylene to ethylene but does poison the activity for ethylene hydrogenation to ethane. Thus the acetylene is removed and the valuable olefin is not converted. [Pg.174]

The process consists of pre-etching, etching, etch neutralization, catalyst appHcation, catalyst activation, and plating. Most commercial appHcations, except REl/EMl shielding, use the initial copper or nickel deposit as a base for subsequent electrolytic plating of electrolytic copper, nickel, or chromium. The exact types and thicknesses of metal used are determined by part usage, eg, automotive exterior, decorative, plumbing, and others (24). [Pg.109]

Two classes of metals have been examined for potential use as catalytic materials for automobile exhaust control. These consist of some of the transitional base metal series, for instance, cobalt, copper, chromium, nickel, manganese, and vanadium and the precious metal series consisting of platinum [7440-06-4], Pt palladium [7440-05-3], Pd rhodium [7440-16-6], Rh iridium, [7439-88-5], Ir and mthenium [7440-18-8], Ru. Specific catalyst activities are shown in Table 3. [Pg.487]

NICKEL CATALYST, FINELY DIVIDED, ACTIVATED OR SPENT 1378 ... [Pg.234]

Two different sets of experimental conditions have been used. Buu-Hoi et al. and Hansen have employed the method introduced by Papa et using Raney nickel alloy directly for the desulfurization in an alkaline medium. Under these conditions most functional groups are removed and this method is most convenient for the preparation of aliphatic acids. The other method uses Raney nickel catalysts of different reactivity in various solvents such as aqueous ammonia, alcohol, ether, or acetone. The solvent and activity of the catalyst can have an appreciable influence on yields and types of compounds formed, but have not yet been investigated in detail. In acetic anhydride, for instance, desulfurization of thiophenes does not occur and these reaction conditions have been employed for reductive acetylation of nitrothiophenes. Even under the mildest conditions, all double bonds are hydrogenated and all halogens removed. Nitro and oxime groups are reduced to amines. [Pg.108]

In addition to the Raney nickel catalysts, Raney catalysts derived from iron, cobalt, and copper have been examined for their action on pyridine. At the boiling point of pyridine, degassed Raney iron gave only a very small yield of 2,2 -bipyridine but the activity of iron in this reaction is doubtful as the catalyst was subsequently found to contain 1.44% of nickel. Traces of 2,2 -bipyridine (detected spectroscopically) were formed from pyridine and a degassed, Raney cobalt catalyst but several Raney copper catalysts failed to produce detectable quantities of 2,2 -bipyridine following heating with pyridine. [Pg.182]


See other pages where Nickel catalyst activities is mentioned: [Pg.49]    [Pg.141]    [Pg.49]    [Pg.141]    [Pg.947]    [Pg.870]    [Pg.164]    [Pg.419]    [Pg.475]    [Pg.14]    [Pg.14]    [Pg.232]    [Pg.422]    [Pg.418]    [Pg.39]    [Pg.91]    [Pg.44]    [Pg.356]    [Pg.190]    [Pg.192]    [Pg.195]    [Pg.197]    [Pg.254]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Activation nickel catalysts

Activity of Raney nickel catalysts

Nickel activity

Nickel catalysts activity, methanation

Nickel catalysts catalytic activities

Nickel-activated carbon catalyst

Nickel-activated carbon catalysts adsorbed

Nickel-activated carbon catalysts ether

Nickel-activated carbon catalysts preparation

Nickel-activated carbon catalysts products

Nickel-alumina catalyst activity data

Raney nickel catalysts activity

© 2024 chempedia.info