Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron half-life

Until 1989, measurements of the neutron half-life had given somewhat discrepant results. SBBN predicted that the half-life should not exceed 10.4 minutes and the currently accepted value is 10.28 minutes, considerably less than had been assumed some years earlier. [Pg.120]

Estimates of primordial helium and deuterium with improved measurements of neutron half-life restrict number of light neutrino families to about 3. Similar, firmer result from LEP measurements at CERN of width of Z° resonance. [Pg.403]

It is generally believed (Salam, 1959) that all matter and energy (except gravitation) consist of sixteen fundamental entities. They are the photon, the electron, the proton, the neutron, six species of hyperon (charged particles with masses greater than the proton), four species of meson (charged particles with masses between the mass of the proton and electron), the muon and the neutrino. With the exception of the mesons all the particles have spin. Only four, however, are stable, namely, the photon, electron, proton and neutrino. The free neutron (half-life 20 min) decays to a proton, an electron and a neutrino. [Pg.26]

For trace quantities of less than 100 ppm, the most successful method — and the most costly— is neutron activation. The sample is subjected to neutron bombardment in an accelerator where oxygen 16 is converted to unstable nitrogen 16 having a half-life of seven seconds. This is accompanied by emission of (J and 7 rays which are detected and measured. Oxygen concentrations as low as 10 ppm can be detected. At such levels, the problem is to find an acceptable blank sample. [Pg.30]

Gr. aktis, aktinos, beam or ray). Discovered by Andre Debierne in 1899 and independently by F. Giesel in 1902. Occurs naturally in association with uranium minerals. Actinium-227, a decay product of uranium-235, is a beta emitter with a 21.6-year half-life. Its principal decay products are thorium-227 (18.5-day half-life), radium-223 (11.4-day half-life), and a number of short-lived products including radon, bismuth, polonium, and lead isotopes. In equilibrium with its decay products, it is a powerful source of alpha rays. Actinium metal has been prepared by the reduction of actinium fluoride with lithium vapor at about 1100 to 1300-degrees G. The chemical behavior of actinium is similar to that of the rare earths, particularly lanthanum. Purified actinium comes into equilibrium with its decay products at the end of 185 days, and then decays according to its 21.6-year half-life. It is about 150 times as active as radium, making it of value in the production of neutrons. [Pg.157]

The discoveries at Berkeley were made by bombarding a target of 249Cf with 12C nuclei of 71 MeV, and 13C nuclei of 69 MeV. The combination of 12C with 249Cf followed by instant emission of four neutrons produced Element 257-104. This isotope has a half-life of 4 to 5 s. [Pg.158]

The same reaction, except with the emission of three neutrons, was thought to have produced 258-104 with a half-life of about 1/100 s. [Pg.159]

Element 259-104 is formed by the merging of a 13C nuclei with 249Cf, followed by emission of three neutrons. This isotope has a half-life of 3 to 4 s, and decays by emitting an alpha particle into 255No, which has a half-life of 185 s. [Pg.159]

Nuclide. Each nuclide is identified by element name and the mass number A, equal to the sum of the numbers of protons Z and neutrons N in the nucleus. The m following the mass number (for example, Zn) indicates a metastable isotope. An asterisk preceding the mass number indicates that the radionuclide occurs in nature. Half-life. The following abbreviations for time units are employed y = years, d = days, h = hours, min = minutes, s = seconds, ms = milliseconds, and ns = nanoseconds. [Pg.333]

Each of the elements has a number of isotopes (2,4), all radioactive and some of which can be obtained in isotopicaHy pure form. More than 200 in number and mosdy synthetic in origin, they are produced by neutron or charged-particle induced transmutations (2,4). The known radioactive isotopes are distributed among the 15 elements approximately as follows actinium and thorium, 25 each protactinium, 20 uranium, neptunium, plutonium, americium, curium, californium, einsteinium, and fermium, 15 each herkelium, mendelevium, nobehum, and lawrencium, 10 each. There is frequently a need for values to be assigned for the atomic weights of the actinide elements. Any precise experimental work would require a value for the isotope or isotopic mixture being used, but where there is a purely formal demand for atomic weights, mass numbers that are chosen on the basis of half-life and availabiUty have customarily been used. A Hst of these is provided in Table 1. [Pg.212]

Determination of gold concentrations to ca 1 ppm in solution via atomic absorption spectrophotometry (62) has become an increasingly popular technique because it is available in most modem analytical laboratories and because it obviates extensive sample preparation. A more sensitive method for gold analysis is neutron activation, which permits accurate determination to levels < 1 ppb (63). The sensitivity arises from the high neutron-capture cross section (9.9 x 10 = 99 barns) of the only natural isotope, Au. The resulting isotope, Au, decays by P and y emission with a half-life of 2.7 d. [Pg.381]

In the startup of a reactor, it is necessary to have a source of neutrons other than those from fission. Otherwise, it might be possible for the critical condition to be reached without any visual or audible signal. Two types of sources are used to supply neutrons. The first, appHcable when fuel is fresh, is califomium-252 [13981-174-Jwhich undergoes fission spontaneously, emitting on average three neutrons, and has a half-life of 2.6 yr. The second, which is effective during operation, is a capsule of antimony and beryUium. Antimony-123 [14119-16-5] is continually made radioactive by neutron... [Pg.217]

The Natural Reactor. Some two biUion years ago, uranium had a much higher (ca 3%) fraction of U than that of modem times (0.7%). There is a difference in half-hves of the two principal uranium isotopes, U having a half-life of 7.08 x 10 yr and U 4.43 x 10 yr. A natural reactor existed, long before the dinosaurs were extinct and before humans appeared on the earth, in the African state of Gabon, near Oklo. Conditions were favorable for a neutron chain reaction involving only uranium and water. Evidence that this process continued intermittently over thousands of years is provided by concentration measurements of fission products and plutonium isotopes. Usehil information about retention or migration of radioactive wastes can be gleaned from studies of this natural reactor and its products (12). [Pg.222]

Radioactivity occurs naturally in earth minerals containing uranium and thorium. It also results from two principal processes arising from bombardment of atomic nuclei by particles such as neutrons, ie, activation and fission. Activation involves the absorption of a neutron by a stable nucleus to form an unstable nucleus. An example is the neutron reaction of a neutron and cobalt-59 to yield cobalt-60 [10198 0-0] Co, a 5.26-yr half-life gamma-ray emitter. Another is the absorption of a neutron by uranium-238 [24678-82-8] to produce plutonium-239 [15117 8-5], Pu, as occurs in the fuel of a nuclear... [Pg.228]

A free neutron has a half-life of 10.4 minutes, but a neutron is stable when bound in a nucleus. [Pg.445]

Sodium is used as a heat-transfer medium in primary and secondary cooling loops of Hquid-metal fast-breeder power reactors (5,155—157). Low neutron cross section, short half-life of the radioisotopes produced, low corrosiveness, low density, low viscosity, low melting point, high boiling point, high thermal conductivity, and low pressure make sodium systems attractive for this appHcation (40). [Pg.169]

Beryllium has a high x-ray permeabiUty approximately seventeen times greater than that of aluminum. Natural beryUium contains 100% of the Be isotope. The principal isotopes and respective half-life are Be, 0.4 s Be, 53 d Be, 10 5 Be, stable Be, 2.5 x 10 yr. Beryllium can serve as a neutron source through either the (Oi,n) or (n,2n) reactions. Beryllium has alow (9 x 10 ° m°) absorption cross-section and a high (6 x 10 ° m°) scatter cross-section for thermal neutrons making it useful as a moderator and reflector in nuclear reactors (qv). Such appHcation has been limited, however, because of gas-producing reactions and the reactivity of beryUium toward high temperature water. [Pg.66]

Another application involves the measurement of copper via the radioisotope Cu (12.6-hour half-life). Since Cu decays by electron capture to Ni ( Cu Ni), a necessary consequence is the emission of X rays from Ni at 7.5 keV. By using X-ray spectrometry following irradiation, sensitive Cu analysis can be accomplished. Because of the short range of the low-energy X rays, near-surface analytical data are obtained without chemical etching. A combination of neutron activation with X-ray spectrometry also can be applied to other elements, such as Zn and Ge. [Pg.678]

Neutron radiation is emitted in fission and generally not spontaneously, although a few heavy radionueleides, e.g. plutonium, undergo spontaneous fission. More often it results from bombarding beryllium atoms with an a-emitter. Neutron radiation deeays into protons and eleetrons with a half-life of about 12 min and is extremely penetrating. [Pg.392]

Hydrogen as it occurs in nature is predominantly composed of atoms in which the nucleus is a single proton. In addition, terrestrial hydrogen contains about 0.0156% of deuterium atoms in which the nucleus also contains a neutron, and this is the reason for its variable atomic weight (p. 17). Addition of a second neutron induces instability and tritium is radioactive, emitting low-energy particles with a half-life of 12.33 y. Some characteristic properties of these 3 atoms are given in Table 3.1, and their implications for stable isotope studies, radioactive tracer studies, and nmr spectroscopy are obvious. [Pg.34]

Phosphorus has only one stable isotope, J P, and accordingly (p. 17) its atomic weight is known with extreme accuracy, 30.973 762(4). Sixteen radioactive isotopes are known, of which P is by far the most important il is made on the multikilogram scale by the neutron irradiation of S(n,p) or P(n,y) in a nuclear reactor, and is a pure -emitter of half life 14.26 days, 1.7()9MeV, rntan 0.69MeV. It finds extensive use in tracer and mechanistic studies. The stable isotope has a nuclear spin quantum number of and this is much used in nmr spectroscopy. Chemical shifts and coupling constants can both be used diagnostically to determine structural information. [Pg.482]

Polonium, because of its very low abundance and very short half-life, is not obtained from natural sources. Virtually all our knowledge of the physical and chemical properties of the element come from studies on Po which is best made by neutron irradiation of in a nuclear reactor ... [Pg.749]


See other pages where Neutron half-life is mentioned: [Pg.127]    [Pg.449]    [Pg.127]    [Pg.449]    [Pg.319]    [Pg.340]    [Pg.509]    [Pg.155]    [Pg.160]    [Pg.198]    [Pg.203]    [Pg.207]    [Pg.209]    [Pg.1287]    [Pg.216]    [Pg.225]    [Pg.418]    [Pg.150]    [Pg.377]    [Pg.57]    [Pg.217]    [Pg.221]    [Pg.92]    [Pg.326]    [Pg.14]    [Pg.674]    [Pg.8]    [Pg.330]    [Pg.751]    [Pg.1042]    [Pg.1115]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



8 decay half-lives, neutron-rich

Half-lives and delayed neutron

Half-lives and delayed neutron emission probabilities

Neutron reactions half-life

Neutron-rich isotopes, 6-decay half-lives

© 2024 chempedia.info