Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron discovery

The discoveries at Berkeley were made by bombarding a target of 249Cf with 12C nuclei of 71 MeV, and 13C nuclei of 69 MeV. The combination of 12C with 249Cf followed by instant emission of four neutrons produced Element 257-104. This isotope has a half-life of 4 to 5 s. [Pg.158]

The First Reactor. When word about the discovery of fission in Germany reached the United States, researchers thereafter found that (/) the principal uranium isotope involved was uranium-235 (2) slow neutrons were very effective in causing fission (J) several fast neutrons were released and (4) a large energy release occurred. The possibiUty of an atom bomb of enormous destmctive power was visualized. [Pg.212]

The stmcture of the particles inside the nucleus was the next question to be addressed. One step in this direction was the discovery of the neutron in 1932 by Chadwick, and the deterrnination that the nucleus was made up of positively charged protons and uncharged neutrons. The number of protons in the nucleus is known as the atomic number, Z. The number of neutrons is denoted by A/, and the atomic mass is thus A = Z - - N. Another step toward describing the particles inside the nucleus was the introduction of two forces, namely the strong force that holds the protons and neutrons together in spite of the repulsion between the positive charges of the protons, and the weak force that produces the transmutation by P decay. [Pg.445]

In the early years of this century the periodic table ended with element 92 but, with J. Chadwick s discovery of the neutron in 1932 and the realization that neutron-capture by a heavy atom is frequently followed by j6 emission yielding the next higher element, the synthesis of new elements became an exciting possibility. E. Fermi and others were quick to attempt the synthesis of element 93 by neutron bombardment of but it gradually became evident that the main result of the process was not the production of element 93 but nuclear fission, which produces lighter elements. However, in 1940, E. M. McMillan and P. H. Abelson in Berkeley, California, were able to identify, along with the fission products, a short-lived isotope of... [Pg.1251]

E. Fermi (Rome) demonstration of the existence of new radioactive elements produced by neutron irradiation and for the related discovery of nuclear reactions brought about by slow neutrons. [Pg.1301]

Fermi had been fascinated by the discovery of the neutron by James Chadwick in 1932. He gradually switched his research interests to the use of neutrons to produce new types of nuclear reactions, in the hope of discovering new chemical elements or new isotopes of known elements. He had seen at once that the uncharged neutron would not be repelled by the positively-charged atomic nucleus. For that reason the uncharged neutron could penetrate much closer to a nucleus without the need for high-energy particle accelerators. lie discovered that slow neutrons could... [Pg.499]

Nuclear fission is a process in which a heavy nucleus—usually one with a nucleon number of two hundred or more—separates into two nuclei. Usually the division liberates neutrons and electromagnetic radiation and releases a substantial amount of energy. The discoveiyi of nuclear fission is credited to Otto I lahn and Fritz Strassman. In the process of bombarding uranium with neutrons in the late 1930s, they detected several nuclear products of significantly smaller mass than uranium, one of which was identified as Ba. The theorectical underpinnings that exist to this day for nuclear fission were proposed by Lise Meitner and Otto Frisch. Shortly after Hahn and Strassman s discovery. [Pg.858]

In 1921, Irene Curie (1897-1956) began research at the Radium Institute. Five years later she married Frederic Joliot (1900-1958). a brilliant young physicist who was also an assistant at the Institute. In 1931, they began a research program in nuclear chemistry that led to several important discoveries and at least one near miss. The Joliot-Curies were the first to demonstrate induced radioactivity. They also discovered the positron, a particle that scientists had been seeking for many years. They narrowly missed finding another, more fundamental particle, the neutron. That honor went to James Chadwick in England. In 1935,... [Pg.517]

Fission, nuclear The splitting of a heavy nucleus by a neutron into two lighter nuclei, accompanied by the release of energy, 523 discovery, 523-524 process, 524-525 reactors, 525-526... [Pg.687]

Isotopes. Toward the end of Mendeleev s life a growing body of evidence began to challenge his conception of the nature of tiie elements. Several revolutionary discoveries in physics showed that atoms were, in fact, reducible and that there was a sense in which all elements are composed of the same primary matter protons, neutrons, and electrons. Most alarmingly, there was even evidence to suggest that certain elements could be transformed into others through radioactivity. [Pg.145]

Our research at Berkeley has resulted in the discovery of element 94, demonstration of the slow neutron fissiona-bility of its isotope 94239, discovery and demonstration of the slow neutron fissionability of U23 3, spontaneous fission measurements on these isotopes, discovery of 93237, isolation of and nuclear measurements on U23, study of the chemical properties and methods of chemical separation of element 94, demonstration of the presence of small concentrations of 94 in nature and much related information. [Pg.11]

The discoveries of Becquerel, Curie, and Rutherford and Rutherford s later development of the nuclear model of the atom (Section B) showed that radioactivity is produced by nuclear decay, the partial breakup of a nucleus. The change in the composition of a nucleus is called a nuclear reaction. Recall from Section B that nuclei are composed of protons and neutrons that are collectively called nucleons a specific nucleus with a given atomic number and mass number is called a nuclide. Thus, H, 2H, and lhO are three different nuclides the first two being isotopes of the same element. Nuclei that change their structure spontaneously and emit radiation are called radioactive. Often the result is a different nuclide. [Pg.820]

The sub-micro level cannot easily be seen directly, and while its principles and components are currently accepted as tme and real, it depends on the atonuc theory of matter. The scientific definition of a theory can be emphasised here with the picture of the atom constantly being revised. As Silberberg (2006) points out, scientists are confident about the distribution of electrons but the interactions between protons and neutrons within the nucleus are still on the frontier of discovery (p. 54). This demorrstrates the dynamic and exciting nature of chemistry. Appreciating this overview of how scierrtific ideas are developing may help students to expand their epistemology of science. [Pg.173]

The several polymeric metal carbonyls studied have led to some surprisingly high yields [e.g., Fe3(CO),2 and Ruj(CO)j2 in Table IV] but to no substantiated mechanisms. The 17% yield of Fe3(CO),2 in neutron-irradiated Fe(CO)j was interpreted as a reaction of Fe(CO)4 with the Fe(CO)5, but no further evidence is available. The study of Mn2(CO),o has been fruitful (44, 46). The insensitivity of the parent yield MnMn(CO),o to heat indicates that the molecule is formed by a reaction quite early in the sequence, perhaps epithermal. The discovery (46) of a species which reacts rapidly with I2 and exchanges with IMn(CO)5 led to the conclusion that the Mn(CO)5 radical is produced prominently (4.5%) by nuclear reactions in the solid decacarbonyl. The availability of this labeled Mn(CO)5 has made possible several interesting observations about the exchange properties of this radical in the solid (45) and in solution (42). [Pg.229]

After Chadwick s discovery, scientists knew the three components of an atom protons and neutrons in the nucleus with electrons hovering outside. The masses and charges of these constituents are shown in Table 3.1. Chemists have developed a system to describe the elements based on their atomic makeup. The atomic number of an atom is the number of protons in the nucleus. This number is usually represented by the letter Z. Thus, for hydrogen Z = 1, for helium Z = 2, and so on. [Pg.34]

Kennesaw State University. Nuclear Chemistry Discovery of the Neutron (1932). Available online. URL http //www. chemcases.com/nuclear/nc-Ol.htm. [Pg.127]

After the discovery of the combined charge and space symmetry violation, or CP violation, in the decay of neutral mesons [2], the search for the EDMs of elementary particles has become one of the fundamental problems in physics. A permanent EDM is induced by the super-weak interactions that violate both space inversion symmetry and time reversal invariance [11], Considerable experimental efforts have been invested in probing for atomic EDMs (da) induced by EDMs of the proton, neutron, and electron, and by the P,T-odd interactions between them. The best available limit for the electron EDM, de, was obtained from atomic T1 experiments [12], which established an upper limit of de < 1.6 x 10 27e-cm. The benchmark upper limit on a nuclear EDM is obtained from the atomic EDM experiment on Iyt,Hg [13] as d ig < 2.1 x 10 2 e-cm, from which the best restriction on the proton EDM, dp < 5.4 x 10 24e-cm, was also obtained by Dmitriev and Senkov [14]. The previous upper limit on the proton EDM was estimated from the molecular T1F experiments by Hinds and co-workers [15]. [Pg.241]

An inscribed thick plate of brass attributed to the landing, in 1579, of Francis Drake on the coast of California, is retained in safekeeping at the University of California, Berkeley. Since its discovery, in the San Francisco Bay area in 1936, however, there have been doubts about the authenticity of the plate, although an early chemical study had apparently confirmed its authenticity. Regardless of this initial study, doubts about the origin of the plate persisted, and a new study, based on the composition of the brass as determined by neutron activation, X-rays fluorescence, and atomic absorption analysis was initiated to reevaluate the earlier authentication of the plate. The results of this study were then compared with the composition typical of brass from Drake s time as well as from modem brass, and it was then concluded that the plate was probably made during the latter part of the nineteenth century or the early years of the twentieth century (Hedges 1979). [Pg.467]

From 50 years to 100 years after Dalton proposed his theory, various discoveries showed that the atom is not indivisible, but really is composed of parts. Natural radioactivity and the interaction of electricity with matter are two different types of evidence for this subatomic structure. The most important subatomic particles are listed in Table 3-2, along with their most important properties. The protons and neutrons occur in a very tiny nucleus (plural, nuclei). The electrons occur outside the nucleus. [Pg.45]

The development of chemistry itself has progressed significantly by analytical findings over several centuries. Fundamental knowledge of general chemistry is based on analytical studies, the laws of simple and multiple proportions as well as the law of mass action. Most of the chemical elements have been discovered by the application of analytical chemistry, at first by means of chemical methods, but in the last 150 years mainly by physical methods. Especially spectacular were the spectroscopic discoveries of rubidium and caesium by Bunsen and Kirchhoff, indium by Reich and Richter, helium by Janssen, Lockyer, and Frankland, and rhenium by Noddack and Tacke. Also, nuclear fission became evident as Hahn and Strassmann carefully analyzed the products of neutron-bombarded uranium. [Pg.29]

Discovery of the neutron (Chadwick) and positron (Dirac, Anderson). First nuclear reaction induced in an accelerator (7Li(/ , a) Cockcroft and Walton). Baade and Zwicky suggest a neutron star may be created as residue of a supernova explosion. [Pg.401]

Discovery of first pulsar (i.e. neutron star) announced (A. Hewish, J. Bell et al.). [Pg.403]

The number of protons is unique to the element but most elements can exist with two or more different numbers of neutrons in their nucleus, giving rise to different isotopes of the same element. Some isotopes are stable, but some (numerically the majority) have nuclei which change spontaneously - that is, they are radioactive. Following the discovery of naturally radioactive isotopes around 1900 (see Section 10.3) it was soon found that many elements could be artificially induced to become radioactive by irradiating with neutrons (activation analysis). This observation led to the development of a precise and sensitive method for chemical analysis. [Pg.124]

The final piece in this subatomic jigsaw (or, at least, in this simple version) was provided by the discovery of the neutron by James Chadwick (1891 1974) in 1932. Chadwick had been a student of Rutherford s in... [Pg.226]


See other pages where Neutron discovery is mentioned: [Pg.16]    [Pg.267]    [Pg.16]    [Pg.267]    [Pg.543]    [Pg.160]    [Pg.209]    [Pg.8]    [Pg.212]    [Pg.142]    [Pg.315]    [Pg.1301]    [Pg.792]    [Pg.188]    [Pg.81]    [Pg.32]    [Pg.87]    [Pg.14]    [Pg.157]    [Pg.119]    [Pg.226]    [Pg.217]   
See also in sourсe #XX -- [ Pg.24 ]

See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.97 ]

See also in sourсe #XX -- [ Pg.41 , Pg.349 ]




SEARCH



Atomic structure neutron discovery

Discovery of the neutron

Neutron continued discovery

© 2024 chempedia.info