Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uranium bombardment

Under these conditions uranium bombarded with neutrons for an extended period of time at high rates of power output can be safely removed from the reactor under one of the following methods ... [Pg.649]

Los Alamos (1952) thermonuclear explosion as a result of uranium bombardment with fast neutrons ... [Pg.7]

The new elements neptunium and plutonium have been produced in quantity by neutron bombardment of uranium. Subsequently many isotopes have been obtained by transmutation and synthetic isotopes of elements such as Ac and Pa are more easily obtained than the naturally occurring species. Synthetic species of lighter elements, e.g. Tc and Pm are also prepared. [Pg.403]

Initially, the only means of obtaining elements higher than uranium was by a-particle bombardment of uranium in the cyclotron, and it was by this means that the first, exceedingly minute amounts of neptunium and plutonium were obtained. The separation of these elements from other products and from uranium was difficult methods were devised involving co-precipitation of the minute amounts of their salts on a larger amount of a precipitate with a similar crystal structure (the carrier ). The properties were studied, using quantities of the order of 10 g in volumes of... [Pg.443]

The use of larger particles in the cyclotron, for example carbon, nitrogen or oxygen ions, enabled elements of several units of atomic number beyond uranium to be synthesised. Einsteinium and fermium were obtained by this method and separated by ion-exchange. and indeed first identified by the appearance of their concentration peaks on the elution graph at the places expected for atomic numbers 99 and 100. The concentrations available when this was done were measured not in gcm but in atoms cm. The same elements became available in greater quantity when the first hydrogen bomb was exploded, when they were found in the fission products. Element 101, mendelevium, was made by a-particle bombardment of einsteinium, and nobelium (102) by fusion of curium and the carbon-13 isotope. [Pg.443]

Gr. technetos, artificial) Element 43 was predicted on the basis of the periodic table, and was erroneously reported as having been discovered in 1925, at which time it was named masurium. The element was actually discovered by Perrier and Segre in Italy in 1937. It was found in a sample of molybdenum, which was bombarded by deuterons in the Berkeley cyclotron, and which E. Eawrence sent to these investigators. Technetium was the first element to be produced artificially. Since its discovery, searches for the element in terrestrial material have been made. Finally in 1962, technetium-99 was isolated and identified in African pitchblende (a uranium rich ore) in extremely minute quantities as a spontaneous fission product of uranium-238 by B.T. Kenna and P.K. Kuroda. If it does exist, the concentration must be very small. Technetium has been found in the spectrum of S-, M-, and N-type stars, and its presence in stellar matter is leading to new theories of the production of heavy elements in the stars. [Pg.106]

Planet pluto) Plutonium was the second transuranium element of the actinide series to be discovered. The isotope 238pu was produced in 1940 by Seaborg, McMillan, Kennedy, and Wahl by deuteron bombardment of uranium in the 60-inch cyclotron at Berkeley, California. Plutonium also exists in trace quantities in naturally occurring uranium ores. It is formed in much the same manner as neptunium, by irradiation of natural uranium with the neutrons which are present. [Pg.204]

Neutron-rich lanthanide isotopes occur in the fission of uranium or plutonium and ate separated during the reprocessing of nuclear fuel wastes (see Nuclearreactors). Lanthanide isotopes can be produced by neutron bombardment, by radioactive decay of neighboring atoms, and by nuclear reactions in accelerators where the rate earths ate bombarded with charged particles. The rare-earth content of solid samples can be determined by neutron... [Pg.541]

Radiometric ore sorting has been used successfully for some uranium ores because uranium minerals emit gamma rays which may be detected by a scintillation counter (2). In this appHcation, the distribution of uranium is such that a large fraction of the ore containing less than some specified cut-off grade can be discarded with tittle loss of uranium values. Radioactivity can also be induced in certain minerals, eg, boron and beryllium ores, by bombarding with neutrons or gamma rays. [Pg.403]

Radioactivity occurs naturally in earth minerals containing uranium and thorium. It also results from two principal processes arising from bombardment of atomic nuclei by particles such as neutrons, ie, activation and fission. Activation involves the absorption of a neutron by a stable nucleus to form an unstable nucleus. An example is the neutron reaction of a neutron and cobalt-59 to yield cobalt-60 [10198 0-0] Co, a 5.26-yr half-life gamma-ray emitter. Another is the absorption of a neutron by uranium-238 [24678-82-8] to produce plutonium-239 [15117 8-5], Pu, as occurs in the fuel of a nuclear... [Pg.228]

The discovery of plutonium-238, an a-emitter having a half-life, 0, of 87.7 years, by G. T. Seaborg and co-workers (9,10) was achieved by bombardment of uranium using deuterons, (eqs. 1 and 2) ... [Pg.191]

ThSiO "Th and Th are present in naturally occurring uranium Th and Th occur in uranium minerals as members of the decay chain. The remaining isotopes are formed upon neutron bombardment of those isotopes discussed, or by charged particle bombardment of various targets. [Pg.35]

In 1896, Becquerel discovered that uranium was radioactive (3). Becquerel was studying the duorescence behavior of potassium uranyl sulfate, and observed that a photographic plate had been darkened by exposure to the uranyl salt. Further investigation showed that all uranium minerals and metallic uranium behaved in this same manner, suggesting that this new radioactivity was a property of uranium itself In 1934, Fermi bombarded uranium with neutrons to produce new radioactive elements (4). [Pg.313]

In 1934 Fermi decided to bombard uranium with neutrons in an attempt to produce transuranic elements, that is, elements beyond uranium, which is number 92 in the periodic table. He thought for a while that he had succeeded, since unstable atoms were produced that did not seem to correspond to any known radioactive isotope. I le was wrong in this conjecture, but the research itself would eventually turn out to be of momentous importance both for physics and for world history, and worthy of the 1938 Nobel Pri2e in Physics. [Pg.499]

In 1938 Niels Bohr had brought the astounding news from Europe that the radiochemists Otto Hahn and Fritz Strassmann in Berlin had conclusively demonstrated that one of the products of the bom-bardmeiit of uranium by neutrons was barium, with atomic number 56, in the middle of the periodic table of elements. He also announced that in Stockholm Lise Meitner and her nephew Otto Frisch had proposed a theory to explain what they called nuclear fission, the splitting of a uranium nucleus under neutron bombardment into two pieces, each with a mass roughly equal to half the mass of the uranium nucleus. The products of Fermi s neutron bombardment of uranium back in Rome had therefore not been transuranic elements, but radioactive isotopes of known elements from the middle of the periodic table. [Pg.499]

Nuclear fission is a process in which a heavy nucleus—usually one with a nucleon number of two hundred or more—separates into two nuclei. Usually the division liberates neutrons and electromagnetic radiation and releases a substantial amount of energy. The discoveiyi of nuclear fission is credited to Otto I lahn and Fritz Strassman. In the process of bombarding uranium with neutrons in the late 1930s, they detected several nuclear products of significantly smaller mass than uranium, one of which was identified as Ba. The theorectical underpinnings that exist to this day for nuclear fission were proposed by Lise Meitner and Otto Frisch. Shortly after Hahn and Strassman s discovery. [Pg.858]

Uranium-235 and U-238 behave differently in the presence of a controlled nuclear reaction. Uranium-235 is naturally fissile. A fissile element is one that splits when bombarded by a neutron during a controlled process of nuclear fission (like that which occurs in a nuclear reactor). Uranium-235 is the only naturally fissile isotope of uranium. Uranium-238 is fertile. A fertile element is one that is not itself fissile, but one that can produce a fissile element. When a U-238 atom is struck by a neutron, it likely will absorb the neutron to form U-239. Through spontaneous radioactive decay, the U-239 will turn into plutonium (Pu-239). This new isotope of plutonium is fissile, and if struck by a neutron, will likely split. [Pg.868]

Actually, then, by our symbol jjU we are representing not an atom, but a nucleus. Our equation is written in terms of nuclei and particles associated with them. This nuclear equation tells us nothing about what compound ol uranium was bombarded with neutrons or what compound of barium is formed. We are summarizing only the nuclear changes. During the nuclear change there is much disruption of other atoms because of the tremendous amounts of energy liberated. We do not know in detail what happens but eventually we return to electrically neutral substances (chemical compounds) and the neutrons are consumed by other nuclei. [Pg.121]

We solved the first problem by bombarding large amounts of uranyl nitrate with neutrons at the cyclotrons at the University of California and Washington University plutonium concentrates were derived from these sources through the efforts of teams of chemists who used ether extractions to separate the bulk of the uranium and an oxidation-reduction cycle with rare earth fluoride carrier to concentrate the product. I managed to convince chemists trained in the techniques of ultramicrochemistry to join us to solve the second problem—Burris B. Cunningham and Louis B. Werner of the University of California and Michael Cefola from New York University. [Pg.14]

Astatine is a radioactive element that occurs in nature in uranium and thorium ores, but only to a minute extent. Samples are made by bombarding bismuth with a particles in a cyclotron, which accelerates the particles to a very high speed. Astatine isotopes do not exist long enough for its properties to be studied, but it is thought from spectroscopic measurements to have properties similar to those of iodine. [Pg.761]

In 1938, Lise Meitner, Otto Hahn, and Fritz Strassmann realized that, by bombarding heavy atoms such as uranium with neutrons, they could split the atoms into smaller fragments in fission reactions, releasing huge amounts of energy. We can estimate the energy that would be released by using Einstein s equation, as we did in Example 17.5. [Pg.836]

When uranium-235 nuclei are bombarded with neutrons, they can split apart in a variety of ways, like glass balls that shatter into pieces of different sizes. In one process, uranium-235 forms barium-142 and krypton-92 ... [Pg.837]

Induced nuclear fission is fission caused by bombarding a heavy nucleus with neutrons (Fig. 17.23). The nucleus breaks into two fragments when struck by a projectile. Nuclei that can undergo induced fission are called fissionable. For most nuclei, fission takes place only if the impinging neutrons travel so rapidly that they can smash into the nucleus and drive it apart with the shock of impact uranium-238 undergoes fission in this way. Fissile nuclei, however, are nuclei that can be nudged into breaking apart even by slow neutrons. They include uranium-235, uranium-233, and plutonium-239—the fuels of nuclear power plants. [Pg.838]


See other pages where Uranium bombardment is mentioned: [Pg.868]    [Pg.37]    [Pg.68]    [Pg.247]    [Pg.262]    [Pg.848]    [Pg.868]    [Pg.37]    [Pg.68]    [Pg.247]    [Pg.262]    [Pg.848]    [Pg.14]    [Pg.150]    [Pg.154]    [Pg.183]    [Pg.203]    [Pg.207]    [Pg.222]    [Pg.665]    [Pg.430]    [Pg.14]    [Pg.792]    [Pg.850]    [Pg.515]    [Pg.419]    [Pg.14]    [Pg.22]    [Pg.23]    [Pg.225]    [Pg.80]   
See also in sourсe #XX -- [ Pg.3 , Pg.17 , Pg.169 , Pg.390 ]

See also in sourсe #XX -- [ Pg.3 , Pg.17 , Pg.169 , Pg.390 ]




SEARCH



Barium from uranium bombardment

Bombardment

Uranium neutron bombardment

© 2024 chempedia.info