Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neutron absorbers reactors

Boron trifluoride is also employed in nuclear technology by uti1i2ing several nuclear characteristics of the boron atom. Of the two isotopes, B and B, only B has a significant absorption cross section for thermal neutrons. It is used in " BF as a neutron-absorbing medium in proportional neutron counters and for controlling nuclear reactors (qv). Some of the complexes of trifluoroborane have been used for the separation of the boron isotopes and the enrichment of B as (84). [Pg.162]

Hafnium is obtained as a by-product of the production of hafnium-free nuclear-grade 2irconium (see Nuclear reactors Zirconiumand zirconium compounds). Hafnium s primary use is as a minor strengthening agent in high temperature nickel-base superakoys. Additionally, hafnium is used as a neutron-absorber material, primarily in the form of control rods in nuclear reactors. [Pg.439]

The fourth component is the set of control rods, which serve to adjust the power level and, when needed, to shut down the reactor. These are also viewed as safety rods. Control rods are composed of strong neutron absorbers such as boron, cadmium, silver, indium, or hafnium, or an alloy of two or more metals. [Pg.210]

The Model 412 PWR uses several control mechanisms. The first is the control cluster, consisting of a set of 25 hafnium metal rods coimected by a spider and inserted in the vacant spaces of 53 of the fuel assembhes (see Fig. 6). The clusters can be moved up and down, or released to shut down the reactor quickly. The rods are also used to (/) provide positive reactivity for the startup of the reactor from cold conditions, (2) make adjustments in power that fit the load demand on the system, (J) help shape the core power distribution to assure favorable fuel consumption and avoid hot spots on fuel cladding, and (4) compensate for the production and consumption of the strongly neutron-absorbing fission product xenon-135. Other PWRs use an alloy of cadmium, indium, and silver, all strong neutron absorbers, as control material. [Pg.217]

Approximately 5% of the U.S. consumption of is in agriculture. Boron is a necessary trace nutrient for plants and is added in small quantities to a number of fertilizers. Borates are also used in crop sprays for fast rehef of boron deficiency. Borates, when apphed at relatively high concentration, act as nonselective herbicides. Small quantities of borates are used in the manufacture of alloys and refractories (qv). Molten borates readily dissolve other metal oxides usage as a flux in metallurgy is an important apphcation. Other important small volume apphcations for borates are in fire retardants for both plastics and ceUulosic materials, in hydrocarbon fuels for fungus control, and in automotive antifreeze for corrosion control (see Corrosion and corrosion inhibitors). Borates are used as neutron absorbers in nuclear reactors. Several borates, which are registered with the Environmental Protection Agency (EPA) can be used for insecticidal purposes, eg, TIM-BOR. [Pg.205]

CP-1 was assembled in an approximately spherical shape with the purest graphite in the center. About 6 tons of luanium metal fuel was used, in addition to approximately 40.5 tons of uranium oxide fuel. The lowest point of the reactor rested on the floor and the periphery was supported on a wooden structure. The whole pile was surrounded by a tent of mbberized balloon fabric so that neutron absorbing air could be evacuated. About 75 layers of 10.48-cm (4.125-in.) graphite bricks would have been required to complete the 790-cm diameter sphere. However, criticality was achieved at layer 56 without the need to evacuate the air, and assembly was discontinued at layer 57. The core then had an ellipsoidal cross section, with a polar radius of 209 cm and an equatorial radius of309 cm [20]. CP-1 was operated at low power (0.5 W) for several days. Fortuitously, it was found that the nuclear chain reaction could be controlled with cadmium strips which were inserted into the reactor to absorb neutrons and hence reduce the value of k to considerably less than 1. The pile was then disassembled and rebuilt at what is now the site of Argonne National Laboratory, U.S.A, with a concrete biological shield. Designated CP-2, the pile eventually reached a power level of 100 kW [22]. [Pg.437]

Control of the nuclear chain reaction in a reactor is maintained by the insertion of rods containing neutron absorbing materials such as boron, boron carbide, or borated steel. In state-of-the-art high temperature reactor designs, such as the Gas... [Pg.476]

The net yield of thermal neutrons from the fission of is higher than from that of and, furthermore, Th is a more effective neutron absorber than As a result, the breeding of is feasible even in thermal reactors. Unfortunately the use of the Th/ U cycle has been inhibited by reprocessing problems caused by the very high energy y-radiation of some of the daughter products. [Pg.1259]

Many of the fission products formed in a nuclear reactor are themselves strong neutron absorbers (i.e. poisons ) and so will stop the chain reaction before all the (and Pu which has also been formed) has been consumed. If this wastage is to be avoided the irradiated fuel elements must be removed periodically and the fission products separated from the remaining uranium and the plutonijjm. Such reprocessing is of course inherent in the operation of fast-breeder reactors, but whether or not it is used for thermal reactors depends on economic and political factors. Reprocessing is currently undertaken in the UK, France and Russia but is not considered to be economic in the USA. [Pg.1260]

The nuclear reactor also must be shielded against the emission of radioactive material to the external environment. Suitable radiation controls include both thermal and biological shielding systems. Radiation from alpha particles (a rays) and beta particles ((3 rays) has little penetrating power, but gamma rays have deep penetration properties. Neutron radiation is, however, the primary area of risk. Typically, extremely thick concrete walls are used as a neutron absorber, but lead-lined concrete and special concretes are also used. [Pg.63]

If the rate of the chain reaction exceeds a certain level, the reactor will become too hot and begin to melt. Control rods—rods made from neutron-absorbing elements, such as boron or cadmium, and inserted between the fuel rods—help to control the number of available neutrons and the rate of nuclear reaction. [Pg.839]

B is a powerful neutron absorber and has been employed in reactor control rods, neutron detectors, and other applications. Cascades based on exchange distillation of boron-ether complexes have usefully large a s and were used for 10B/UB isotope separation by the US DOE. Exchange distillation takes advantage of the fact that condensed phase/vapor phase separation factors can be enhanced (as compared to liquid/vapor a s) by association/dissociation equilibria in one or the other phase. At the normal boiling point (173 K) the VPIE for... [Pg.276]

TEA chloride See tetraethylammonium chloride., te,e a klorjd ) technetium chem A transition element, symbol Tc, atomic number 43 derived from uranium and plutonium fission products chemically similar to rhenium and manganese isotope Tc has a half-life of 200,000 years used to absorb slow neutrons in reactor technology. tek ne-she-om ... [Pg.368]

Cadmium is a neutron absorber, making it useful as control rods in nuclear reactors. The rods are raised to activate the reactor and then lowered into the reactor to absorb neutrons that halt the fission reaction. [Pg.145]

It is an excellent neutron absorber used to capture neutrons in nuclear reactors to prevent a runaway fission reaction. As the boron rods are lowered into the reactor, they control the rate of fission by absorbing excess neutrons. Boron is also used as an oxygen absorber in the production of copper and other metals,... [Pg.177]

There are only a few commercial uses for europium. Europium oxide, (Eu O ), a compound of europium, is added to infra-sensitive phosphors to enhance the red colors on TV and computer-monitor picture tubes. It is also added to fluorescent light tubes to increase their efflciency, as well as to some materials to make lasers. Since it is a good neutron absorber, it is part of nuclear reactor control rods. Europium is an additive to the glue used on postage stamps, thus making it possible for the electronic sorting machines in U.S. postal offices to read the stamps. [Pg.290]

Plutonium is the most important transuranium element. Its two isotopes Pu-238 and Pu-239 have the widest applications among all plutonium isotopes. Plutonium-239 is the fuel for nuclear weapons. The detonation power of 1 kg of plutonium-239 is about 20,000 tons of chemical explosive. The critical mass for its fission is only a few pounds for a solid block depending on the shape of the mass and its proximity to neutron absorbing or reflecting substances. This critical mass is much lower for plutonium in aqueous solution. Also, it is used in nuclear power reactors to generate electricity. The energy output of 1 kg of plutonium is about 22 million kilowatt hours. Plutonium-238 has been used to generate power to run seismic and other lunar surface equipment. It also is used in radionuclide batteries for pacemakers and in various thermoelectric devices. [Pg.727]

Samarium sesquioxide is used in optical and infrared absorbing glass to absorb infrared radiation. Also, it is used as a neutron absorber in control rods for nuclear power reactors. Tbe oxide catalyzes dehydration of acychc primary alcohols to aldehydes and ketones. Another use involves preparation of other samarium salts. [Pg.808]

Another application concerning the liquid-metal-cooled fast breeder reactors (LMFBR) was studied as development of advanced control rod materials for FBR (22). Fabrication tests and out-of-pile measurements were made of B4C/Cu cermet to obtain high-performance neutron absorber materials for LMFBR. A coating layer of Cu was formed on the surface of B4C/Cu powder, and then the coated B4C... [Pg.717]


See other pages where Neutron absorbers reactors is mentioned: [Pg.5481]    [Pg.5481]    [Pg.169]    [Pg.198]    [Pg.157]    [Pg.186]    [Pg.150]    [Pg.212]    [Pg.214]    [Pg.242]    [Pg.515]    [Pg.2451]    [Pg.431]    [Pg.206]    [Pg.208]    [Pg.404]    [Pg.956]    [Pg.1257]    [Pg.500]    [Pg.848]    [Pg.160]    [Pg.452]    [Pg.1754]    [Pg.157]    [Pg.217]    [Pg.288]    [Pg.297]    [Pg.15]    [Pg.1546]    [Pg.1800]    [Pg.144]   


SEARCH



Absorber-reactors

Fast neutron reactors absorbent elements

Neutron absorber

Neutron absorbers reactor systems

Neutron absorbers thermal water reactors

© 2024 chempedia.info