Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nervous system motor function

The nervous system is divided into two parts the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord. The PNS consists of all afferent (sensory) neurons, which carry nerve impulses into the CNS from sensory end organs in peripheral tissues, and all efferent (motor) neurons, which carry nerve impulses from the CNS to effector cells in peripheral tissues. The peripheral efferent system is further divided into the somatic nervous system and the autonomic nervous system. The effector cells innervated by the somatic nervous system are skeletal muscle cells. The autonomic nervous system innervates three types of effector cells (1) smooth muscle, (2) cardiac muscle, and (3) exocrine glands. While the somatic nervous system can function on a reflex basis, voluntary control of skeletal muscle is of primary importance. In contrast, in the autonomic nervous system voluntary control can be exerted, but reflex control is paramount. [Pg.83]

At high doses these effects are severe. There are marked disturbances of function at all levels of the central nervous system motor coordination, attentiveness, and control of thought and the learning process all decline. Confusion, restlessness, impairment of perception and interpretation, and memory span are observed. The first symptoms occur... [Pg.137]

Transmission of nervous impulses by way of acetylcholine release and action is widespread, occurring not only in higher animals but also important in arthropods. In higher animals acetylcholine is the most important neurohormonal transmitter. It functions in the autonomic system, in motor nerves, and in some parts of the central nervous system. It functions not only in synapses between neurons but also on muscles or glands that are controlled by the neurons. After its action the acetylcholine is removed rapidly through hydrolysis by the enzyme acetylcholine esterase. Drugs, including some alkaloids, can interact with this process at several levels ... [Pg.15]

CGRP is widely distributed throughout the peripheral and central nervous systems and is found ia sensory neurons and ia the autonomic and enteric nervous systems. In many iastances CGRP is co-localized with other neuroregulators, eg, ACh ia motor neurons, substance P, somatostatin, vasoactive intestinal polypeptide (VIP), and galanin ia sensory neurons. It is also present ia the CNS, with ACh ia the parabigeminal nucleus and with cholecystokinin (CCK) ia the dorsal parabrachial area. CGRP functions as a neuromodulator or co-transmitter. [Pg.531]

Peripheral nervous system Nerve tissues lying outside the brain and spinal cord, functions include the transmittal of sensory information such as touch, heat, cold, and pain, and the motor impulses for limb movement. [Pg.1466]

Morphine. This alkaloid exerts both a depressing and a stimulating action on the central nervous system, the depression affecting the brain especially the sensation of pain and the respiration the cerebral motoi functions are less affected. The stimulant action in the cord is best seen in the cold-blooded animals, when it may develop into tonic convulsions. In higher animals, but rarely in man, there may be some indication of this stimulant action. In cats it may also involve the motor areas, and they... [Pg.259]

Because of its motor, i.e., activating effect on vascular smooth muscle and its inhibitory effect on intestinal smooth muscle, the sympathetic nervous system has been cast into the role of the component of the nervous system that executes control of visceral function in times of physical emergency for the organism. The phrase fight or flight has been often used to describe the circumstances in which the adrenergic transmitters of the sympathetic system are dominant over the cholinergic parasympathetic system. This concept is perhaps oversimplified but it has the utility of a first approximation of how the two components of the ANS interact in the periphery. Sensory inputs which lead to increased blood pressure, for example, activate the sympathetic pathways. [Pg.198]

Animal behavior has been dehned by Odnm (1971) as the overt action an organism takes to adjnst to its environment so as to ensure its survival. A simpler definition is the dynamic interaction of an animal with its enviromnent (D Mello 1992). Another, more elaborate, one is, the outward expression of the net interaction between the sensory, motor arousal, and integrative components of the central and peripheral nervons systems (Norton 1977). The last dehnition spells out the important point that behavior represents the integrated function of the nervous system. Accordingly, disruption of the nervous system by neurotoxic chemicals may be expected to cause changes in behavior (see Klaasen 1996, pp. 466-467). [Pg.295]

Many tests have been devised to provide quantitative measures of behavioral disturbances caused by neurotoxic chemicals. Tests have been devised that assess the effects of chemicals on four behavioral functions (D Mello 1992). These are sensory, cognitive, motor, and affective functions. However, because the entire nervous system tends to work in an integrated way, these functions are not easily separable from one another. For example, the outcome of tests focused on sensory perception by rats may be influenced by effects of the test chemical on motor function. [Pg.306]

Figure 1. A depiction of the several different ionic currents necessary for the acute function of neuromuscular transmission in the skeletal motor and the efferent autonomic nervous system. The boxed current designations are associated, by the arrows, with those cellular regions where their physiological role is most evident, although these currents often exist in other regions of the cell. = neurotransmitter-activated current ... Figure 1. A depiction of the several different ionic currents necessary for the acute function of neuromuscular transmission in the skeletal motor and the efferent autonomic nervous system. The boxed current designations are associated, by the arrows, with those cellular regions where their physiological role is most evident, although these currents often exist in other regions of the cell. = neurotransmitter-activated current ...
Tetanus occurs when Cl. tetani, ubiquitous in the soil and faeces, contaminates wounds, especially deep puncture-type lesions. These might be minor traumas such as a splinter, or major ones such as battle injury. At these sites, tissue necrosis and possibly microbial growth reduce the oxygen tension to allow this anaerobe to multiply. Its growth is accompanied by the production of a highly potent toxin which passes up peripheral nerves and diSuses locally within the central nervous system. It acts like strychnine by affecting normal function at the synapses. Since the motor nerves of the brain stem are the shortest, the cranial nerves are the first affected, with twitches of the eyes and spasms of the jaw (lockjaw). [Pg.85]

The primary system of cannabimimetic activity is the nervous system. The CB1 receptor is omnipresent in the brain, especially in areas that control functions affected by cannabimimetics. One of the functions most pronouncedly influenced by cannabimimetics is motor behavior. Catalepsy, immobility, ataxia, and impairment of complex behavioral acts after acute administration of high doses of cannabimimetics are manifestations of such motor effects (Pertwee, 1997). In lower doses cannabimimetics produce the opposite effects. The very dense presence of CB1 in the cerebellum and the basal ganglia, areas responsible for motor activity, is... [Pg.118]

One of the most sensitive systems affected by lead exposure is the nervous system. Encephalopathy is characterized by symptoms such as coma, seizures, ataxia, apathy, bizarre behavior, and incoordination (CDC 1985). Children are more sensitive to neurological changes. In children, encephalopathy has been associated with PbB levels as low as 70 pg/dL (CDC 1985). The most sensitive peripheral index of neurotoxicity of lead is reported to be slowed conduction in small motor libers of the ulnar nerve in workers with 30-40 pg/dL lead in blood (Landrigan 1989). Other potential biomarkers of lead suggested for neurotoxicity in workers are neurological and behavioral tests, as well as cognitive and visual sensory function tests (Williamson and Teo 1986). However, these tests are not specific to elevated lead exposure... [Pg.322]

Figure 1.1 Functional components of the nervous system. The sensory division of the peripheral nervous system is sensitive to changes in the internal and external environment. The information gathered by this component is transmitted to the CNS where it is processed, integrated, and interpreted. The CNS then determines the appropriate response to this input. This response is carried out by the transmission of nerve impulses in the motor division of the peripheral nervous system to the effector tissues. Figure 1.1 Functional components of the nervous system. The sensory division of the peripheral nervous system is sensitive to changes in the internal and external environment. The information gathered by this component is transmitted to the CNS where it is processed, integrated, and interpreted. The CNS then determines the appropriate response to this input. This response is carried out by the transmission of nerve impulses in the motor division of the peripheral nervous system to the effector tissues.
The brain is the integrative portion of the nervous system that serves to receive, process, and store sensory information and then plan and orchestrate the appropriate motor response. It is divided into several anatomically and functionally distinct regions (see Table 6.2). The forebrain consists of the cerebrum, basal ganglia, thalamus, and hypothalamus. The midbrain, along with the pons and the medulla of the hindbrain, composes the functional region referred to as the brainstem. The cerebellum is also considered a component of the hindbrain but is functionally distinct from the brainstem. [Pg.49]

Stretton, A.O.W., Donmoyer, J.E., Davis, R.E., Meade, J.A., Cowden, C. and Sithigorngul, P. (1992) Motor behavior and motor nervous system function in the nematode Ascaris suum. Journal of Parasitology 78, 206-214. [Pg.448]

Although the last family of motor proteins to be discovered, the kinesins have proved to be remarkably diverse. So far, there are at least 14 distinct subfamilies in the kinesin family and more are likely to emerge, all with homology in their motor domain [53], Within a subfamily, however, the more extensive sequence similarities are presumed to reflect related functions. At present, many questions remain about the function of these various motors in the nervous system. [Pg.497]

Nervous system disorders are diagnosed by examining the patient s mental status, cranial nerve function, motor system reflexes, and sensory systems. An electroencephalogram (EEG) tests higher brain and nervous system functions. [Pg.40]

Although cumulative effects of cyano and non-cyano pyrethroids on motor activity were reported [23], it is difficult to demonstrate the common mechanism using such a non-specific endpoint, as motor activity is an apical measure of the disruption of nervous system function [24]. [Pg.86]

In the central nervous system (CNS) of guinea-pigs and rats, 5-HT4 receptors are expressed in two anatomical and functional structures the extrapyramidal motor system and the mesolimbic system [6,7]. In human brain, the presence of 5-HT4 receptors has been shown in basal ganglia and in the caudate putamen nuclei, where the density is the highest [8]. [Pg.197]

Cannabis has been used by humans for thousands of years for both psychoactive and non psychoactive purposes. It has long been known and remains in popular use for recreational purposes. Through the study of cannabis, we have discovered new chemical systems in the brain and body, and are just beginning to appreciate their functions. To be certain, cannabis is not an innocuous substance. Its chemical constituents potently act on the nervous system and other physiological systems. Several neurochemical systems in the brain are affected, with consequences in systems governing cognitive, motor, and emotional function. [Pg.441]

The nervous system consists of two main units the central nervous system (CNS), which includes the brain and the spinal cord and the peripheral nervous system (PNS), which includes the body s system of nerves that control the muscles (motor function), the senses (the sensory nerves), and which are involved in other critical control functions. The individual units of the nervous system are the nerve cells, called neurons. Nenrons are a nniqne type of cell becanse they have the capacity to transmit electrical messages aronnd the body. Messages pass from one nenron to the next in a strnctnre called a synapse. Electric impnlses moving along a branch of the nenron called the axon reach the synapse (a space between nenrons) and canse the release of certain chemicals called neurotransmitters, one of which, acetylcholine, we described earlier in the chapter. These chemicals migrate to a nnit of the next nenron called the dendrites, where their presence canses the bnild-np of an electrical impnlse in the second nenron. [Pg.122]


See other pages where Nervous system motor function is mentioned: [Pg.88]    [Pg.88]    [Pg.141]    [Pg.347]    [Pg.413]    [Pg.1057]    [Pg.498]    [Pg.522]    [Pg.760]    [Pg.196]    [Pg.474]    [Pg.36]    [Pg.9]    [Pg.11]    [Pg.431]    [Pg.283]    [Pg.291]    [Pg.477]    [Pg.478]    [Pg.498]    [Pg.521]    [Pg.604]    [Pg.927]    [Pg.244]    [Pg.308]    [Pg.413]    [Pg.60]    [Pg.262]    [Pg.262]    [Pg.128]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Functional systems

Motor system

© 2024 chempedia.info