Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Negative electron capture

Figure 6. (a) Positive El spectra and (b) negative electron capture mass spectra of a metabolite of Aspergillus wentii [61]. [Pg.156]

While most peptide dissociation is carried out in the positive ion mode, the negative ion mode is often better suited for acidic peptides, particularity those carrying acidic modifications (e.g., phosphorylations). There are a number of equivalent ion activation methods for peptide anions, involving ion-electron and ion-ion reactions, such as electron detachment dissociation (EDD) [49], negative electron transfer dissociation (NETD) [50, 51], and negative electron capture dissociation (nECD) [52]. [Pg.178]

Figure Bl.6.11 Electron transmission spectrum of 1,3-cyclohexadiene presented as the derivative of transmitted electron current as a fiinction of the incident electron energy [17]. The prominent resonances correspond to electron capture into the two unoccupied, antibonding a -orbitals. The negative ion state is sufficiently long lived that discrete vibronic components can be resolved. Figure Bl.6.11 Electron transmission spectrum of 1,3-cyclohexadiene presented as the derivative of transmitted electron current as a fiinction of the incident electron energy [17]. The prominent resonances correspond to electron capture into the two unoccupied, antibonding a -orbitals. The negative ion state is sufficiently long lived that discrete vibronic components can be resolved.
Stemmier, E.A. and Hites, R.A., Electron Capture Negative Ion Mass Spectra of Environmental Contaminants and Related Compounds, VCH, Weinheim, Germany, 1988. [Pg.452]

Quasiequilibrium statistical theory was applied to the negative ion mass spectra of diphenylisoxazoles. Electron capture by the isoxazole leads to molecular ions having excited vibrations of the ring and of bonds attached to it. The dissociation rate constants were also calculated (77MI41615, 75MI416U). [Pg.7]

A type of molecular resonance scattering can also occur from the formation of short-lived negative ions due to electron capture by molecules on surfrices. While this is frequently observed for molecules in the gas phase, it is not so important for chemisorbed molecules on metal surfaces because of extremely rapid quenching (electron transfer to the substrate) of the negative ion. Observations have been made for this scattering mechanism in several chemisorbed systems and in phys-isorbed layers, with the effects usually observed as smaU deviations of the cross section for inelastic scattering from that predicted from dipole scattering theory. [Pg.445]

Electron Capture Detector In the electron capture detector (ECD), a beta emitter such as tritium or 63Ni is used to ionize the carrier gas. Electrons from the ionization migrate to the anode and produce a steady current. If the GC effluent contains a compound that can capture electrons, the current is reduced because the resulting negative ions move more slowly than electrons. Thus, the signal measured is the loss of electrical current. The ECD is very sensitive to materials that readily capture electrons. These materials frequently have unsaturation and electronegative substituents. Because the ECD is sensitive to water, the carrier gas must be dry. [Pg.11]

Negative Ion Chemical Ionization Negative ions are produced under ci conditions by electron capture. Under the higher pressure conditions of the ci ion source, electrons, both primary (those produced by the filament) and secondary (produced during an ionization event), undergo collisions until they reach near-thermal energies. Under these conditions, molecules... [Pg.16]

Negative Cl can give excellent results for certain types of compounds. Compounds with electronegative substituents and unsaturation can be expected to have a large electron capture cross-section and thus work well in the negative ion mode. Frequently, much higher sensitivity is obtained for these compound types in the negative ion mode than under positive ion conditions. In addition, the molecular ion is usually very abundant. The... [Pg.375]

Furlei and coworkers44 studied the negative ion mass spectra of several cyclic sulfones (82-98) upon dissociative electron capture and concluded that the negative molecular ions were notably stabilized by the introduction of electron-withdrawing substituents and/or unsaturation. Some difference was found in the negative ion mass spectra of configurational isomers (85 vs. 86 and 87 vs. 88) in contrast to the situation in their positive ion spectra. A strong S02 ion (m/z 64) was observed also for all the compounds studied. [Pg.146]

The eventual fate of any ion is its neutralization, either by a free electron or by a negative ion formed by electron attachment. In ethylene radiolysis at high dose rates, electron capture processes should be insignificant (29), and the recombination energy of the positive ion will become available on neutralization, a portion of which may be in the form of excitation (59). [Pg.267]

ECD = electron capture detector GC = gas chromatography HPLC = high-performance liquid chromatography MC = microcoulometric detector MS = mass spectrometry NICI = negative ion chemical ionization RSD = relative standard deviation SPE = solid phase extraction... [Pg.252]

Flow limitations restrict application of the DFI interface for pSFC-MS coupling. pSFC-DFI-MS with electron-capture negative ionisation (ECNI) has been reported [421], The flow-rate of eluent associated with pSFC (either analytical scale - 4.6 mm i.d. - or microbore scale 1-2 mm, i.d.) renders this technique more compatible with other LC-MS interfaces, notably TSP and PB. There are few reports on workable pSFC-TSP-MS couplings that have solved real analytical problems. Two interfaces have been used for pSFC-EI-MS the moving-belt (MB) [422] and particle-beam (PB) interfaces [408]. pSFC-MB-MS suffers from mechanical complexity of the interface decomposition of thermally labile analytes problems with quantitative transfer of nonvolatile analytes and poor sensitivity (low ng range). The PB interface is mechanically simpler but requires complex optimisation and poor mass transfer to the ion source results in a limited sensitivity. Table 7.39 lists the main characteristics of pSFC-PB-MS. Jedrzejewski... [Pg.482]

ECNI Electron capture negative ionisation ESIMS Electrospray ionisation mass... [Pg.753]

McClure, TD and Liebler, DC, 1995. Electron capture negative chemical ionization mass spectrometry and tandem mass-spectrometry analysis of beta-carotene, alpha-tocopherol and their oxidation products. J Mass Spectrom 30, 1480-1488. [Pg.347]

Cyclotrons and accelerators are sources of charged particles (i.e., protons, deuterons, a particles, etc.), and the radionuclides produced are generally proton rich and decay by positron emission and/or electron capture. A positive ion beam is eventually extracted from the cyclotron, regardless of whether positive or negative ions were accelerated. The isotope of interest is separated from the target for use in chemical syntheses. Accelerator- or cyclotron-produced radioisotopes tend to be the most expensive as only one radionuclide is produced at a time. [Pg.887]

Wagner, S.L., L.R. Durand, R.D. Inman, U. Kiigemagi, andM.L. Deinzer. 1991. Residues of pentachlorophenol and other chlorinated contaminants in human tissues analysis by electron capture gas chromatography and electronic capture negative ion mass spectrometry. Arch. Environ. Contam. Toxicol. 21 596-606. [Pg.1234]

Figure 12. Synthetic route to a molecular device that bears functionality for electron capture. This nitroaniline exhibits negative differential resistance. Figure 12. Synthetic route to a molecular device that bears functionality for electron capture. This nitroaniline exhibits negative differential resistance.
Qin BH, Yu BB, Zhang Y, Lin XC. Residual analysis of organochlorine pesticides in soil by gas chromatograph-electron capture detector (gc-ecd) and gas chromatograph-negative chemical ionization mass spectrometry (GC-NCI-MS). Environ. Forensics 2009 10 331-335. [Pg.334]

Yu and Bayne [58] differentiated different aroclors in soil using linear discrimination and analyses by electron capture negative ion chemical ionization mass spectrometry. [Pg.174]

The electron capture negative ion chemical ionization mass spectrometric method [58] discussed in section 5.6.1.6 for the determination of polychlorobiphenyls in soils has also been applied to sludges. [Pg.179]

Imazethapyr herbicide has been determined at the pg kg-1 level in soil by microwave assisted extraction using electron capture negative chemical ionization mass spectrometry [176], A soil extract is prepared by extraction with 0.1M ammonium acetate at pHIO or 1M ammonium acetate at pH9.5. [Pg.256]


See other pages where Negative electron capture is mentioned: [Pg.501]    [Pg.243]    [Pg.213]    [Pg.243]    [Pg.207]    [Pg.207]    [Pg.47]    [Pg.37]    [Pg.140]    [Pg.145]    [Pg.656]    [Pg.659]    [Pg.660]    [Pg.989]    [Pg.990]    [Pg.357]    [Pg.363]    [Pg.461]    [Pg.48]    [Pg.234]    [Pg.270]    [Pg.246]    [Pg.1456]    [Pg.104]    [Pg.90]    [Pg.459]   
See also in sourсe #XX -- [ Pg.230 ]




SEARCH



Electron negative

© 2024 chempedia.info