Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanisms scattering

MetaUic behavior is observed for those soHds that have partially filled bands (Fig. lb), that is, for materials that have their Fermi level within a band. Since the energy bands are delocalized throughout the crystal, electrons in partially filled bands are free to move in the presence of an electric field, and large conductivity results. Conduction in metals shows a decrease in conductivity at higher temperatures, since scattering mechanisms (lattice phonons, etc) are frozen out at lower temperatures, but become more important as the temperature is raised. [Pg.236]

Figure 1 Simplistic schematic illustration of the scattering mechanism upon which X-ray photoelectron diffraction (XPD) is based. An intensity increase is expected in the forward scattering direction, where the scattered and primary waves constructively interfere. Figure 1 Simplistic schematic illustration of the scattering mechanism upon which X-ray photoelectron diffraction (XPD) is based. An intensity increase is expected in the forward scattering direction, where the scattered and primary waves constructively interfere.
A type of molecular resonance scattering can also occur from the formation of short-lived negative ions due to electron capture by molecules on surfrices. While this is frequently observed for molecules in the gas phase, it is not so important for chemisorbed molecules on metal surfaces because of extremely rapid quenching (electron transfer to the substrate) of the negative ion. Observations have been made for this scattering mechanism in several chemisorbed systems and in phys-isorbed layers, with the effects usually observed as smaU deviations of the cross section for inelastic scattering from that predicted from dipole scattering theory. [Pg.445]

J. L. Erskine. CRC Crit. Rev. Solid State Mater. Sci. 13,311,1987. Recent review of scattering mechanisms, surface phonon properties, and improved instrumentation. [Pg.459]

So, the resistivities due to various scattering mechanisms add, as well as the contributions to the conductivity from different carrier groups. [Pg.111]

The theory discussed in this paper treats the biased superlattices as onedimensional systems in a single particle envelope approximation in which the electrons and holes act independently. Scattering mechanisms, which cause a loss of coherence, have not yet been included in the formalism. Loss of coherence represents a significant obstacle to quantum control in... [Pg.257]

The fundamental scattering mechanism responsible for ROA was discovered by Atkins and Barron (1969), who showed that interference between the waves scattered via the polarizability and optical activity tensors of the molecule yields a dependence of the scattered intensity on the degree of circular polarization of the incident light and to a circular component in the scattered light. Barron and Buckingham (1971) subsequently developed a more definitive version of the theory and introduced a definition of the dimensionless circular intensity difference (CID),... [Pg.77]

It is important to realize that even in the presence of traps, the measured Hall mobility refers to that in the higher conducting state (Munoz, 1991). Thus, a value of r significantly >1.0, and increasing with temperature in a certain interval, has been taken as an evidence in favor of traps in NP near the critical point (Munoz, 1988 Munoz and Ascarelli, 1983). Similarly, a nearly constant value of r near 1.0 in TMS over the temperature interval 22-164°C has been taken to indicate absence of trapping in that liquid. The scattering mechanism in TMS is consistent with that by optical phonons (Doldissen and Schmidt, 1979 Munoz and Holroyd, 1987). [Pg.325]

Munoz and Holroyd (1987) have measured Hall mobility in TMS from 22 to 164° C. This measurement parallels very well the variation of drift mobility with temperature in this liquid, and the Hall ratio remains essentially constant at 1.0 0.1. Both the drift and Hall mobilities in TMS decrease with temperature beyond 100°C, becoming 50 cmV s-1 at 164°C. The overall conclusion is that TMS is essentially trap-free in this temperature range, and the decrease of mobilities is due not to trapping, but to some other scattering mechanism that is more effective at higher temperatures. [Pg.326]

Hall and drift mobilities have been measured in mixtures of n-pentane and NP by Itoh et al., (1991) between 20 and 150°C. They found both mobilities to decrease with the addition of n-pentane to the extent that the Hall mobility in a 30% solution was reduced by a factor of about 5 relative to pure NR However the Hall ratio remained in the range 0.9 to 1.5. This indicates that, up to 30% n-pentane solution in NP, the incipient traps are not strong enough to bind an electron permanently. However, they are effective in providing additional scattering mechanism for electrons in the conducting state. [Pg.326]

The term III scattering (equation 8) is the weakest in the three scattering mechanisms, as shown by two derivative terms (M ) in the electronic transition integrals. Clearly, for a dipole forbidden transition (M° = 0) the only non-zero term is term III. The term in scattering results in binary overtone and combination transitions of vibronically active modes. It is noted that no fundamental transition survives. [Pg.153]

It is worthwhile at this point, therefore, to examine in more detail some of the electron scattering mechanisms which govern the various signals involved and to show how detector geometries may be optimized for maximum sensitivity. [Pg.364]

In addition to ELS, charged aerosol (CA) or corona detector has more recently been introduced as a very promising HPLC detection system [105] while the sensitivity of the two systems is quite close, CA detector offers the advantage of a nearly linear response factor, particularly crucial for the assessment of enantiomeric purities, whereas ELS provides a nonlinear response at very low or high levels of analytes, resulting from several light scattering mechanisms and particle size distribution. [Pg.136]

For many nonpolar liquids, the electron drift mobility is less than 10 cm /Vs, too low to be accounted for in terms of a scattering mechanism. In these liquids, electrons are trapped as discussed in Sec. 4. Considerable evidence now supports the idea of a two-state model in which equilibrium exists between the trapped and quasi-free states ... [Pg.197]

Note that because of the different scattering mechanisms, the bond lengths determined by X-ray and neutron studies will be different. The neutron determination will give the true distance between the nuclei, whereas the X-ray values are distorted by the size of the electron cloud and so are shorter. [Pg.114]


See other pages where Mechanisms scattering is mentioned: [Pg.1165]    [Pg.2882]    [Pg.187]    [Pg.10]    [Pg.244]    [Pg.414]    [Pg.444]    [Pg.457]    [Pg.108]    [Pg.121]    [Pg.163]    [Pg.233]    [Pg.394]    [Pg.159]    [Pg.43]    [Pg.401]    [Pg.321]    [Pg.325]    [Pg.347]    [Pg.275]    [Pg.270]    [Pg.159]    [Pg.160]    [Pg.160]    [Pg.203]    [Pg.278]    [Pg.182]    [Pg.182]    [Pg.215]    [Pg.313]    [Pg.618]    [Pg.226]    [Pg.45]    [Pg.209]    [Pg.51]   
See also in sourсe #XX -- [ Pg.368 , Pg.369 , Pg.375 ]

See also in sourсe #XX -- [ Pg.63 , Pg.67 ]




SEARCH



Backward scattering mechanism

Electron-scattering mechanisms

Forward scattering mechanism

Inelastically scattered electrons mechanisms of energy loss

Loss mechanisms scatterers

Mechanism of Energy Loss by Scattering Collisions

Quantum mechanical scattering

Quantum mechanical scattering calculations

Quantum mechanical scattering theory

Quantum mechanics scattering

Scattering contrast mechanism

© 2024 chempedia.info