Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural rubber structure processing oils

Examples include oil-well drilling muds, greases, lipstick, toothpaste, and natural rubber polymers. An illustration is provided in Figure 6.13. Here, the flocculated structures are responsible for the existence of a yield stress. Once disrupted, the nature of the floe break-up process determines the extent of shear thinning behaviour... [Pg.174]

Our analytical procedure consists of stepwise acetone extraction followed by cyclohexane. Subsequently, the acetone-soluble fraction is partioned between hexane/aqueous ethanol (12,15), and the soluble components are freed of solvents and determined gravimetrically. For lack of specific nomenclature, the botanochemicals isolated by this technique have been referred to as "whole plant oil," "polyphenol," and "polymeric hydrocarbon." Actually, components from these extracts need to be further characterized. However, petroleum refinery processes may be sufficiently insensitive to allow use of carbon-hydrogen rich compounds represented by a broad spectrum of structures. For example, consider the diverse chemicals ranging from methanol to natural rubber which have been converted to gasoline (16). Thus, chemical species may be important if chemical intermediates are being generated but may be nonconsequential for production of fuels, solvents, carbon black, and other basic chemicals. [Pg.127]

In some colloidal dispersions, the shear rate (flow) remains at zero until a threshold shear stress is reached, termed the yield stress (ry), and then Newtonian or pseudoplastic flow begins. A common cause of such behaviour is the existence of an inter-particle or inter-molecular network, which initially acts like a solid and offers resistance to any positional changes of the volume elements. In this case, flow only occurs when the applied stress exceeds the strength of the network and what was a solid becomes a fluid. Examples include oil well drilling muds, greases, lipstick, toothpaste and natural rubber polymers. An illustration is provided in Figure 6.13. Here, the flocculated structures are responsible for the existence of a yield stress. Once disrupted, the nature of the floe break-up process determines the extent of shear-thinning behaviour as shear rate increases. [Pg.229]

Chapter 5 summarizes the investigation of lignocellulosic flax fiber-based reinforcement requirements to obtain structural and complex shape polymer composites. This chapter discusses in detail the possibility of forming complex shape structural composites which are highly desirable for advanced applications. Chapter 7 focuses on the structure and properties of cellulose-based starch polymer composites, while Chapter 8 focuses on the spectroscopic analysis of rice husk and wheat gluten husk-based polymer composites using computational chemistry. Chapter 9 summarizes the processing, characterization and properties of oil palm fiber-reinforced polymer composites. In this chapter, the use of oil palm as reinforcement in different polymer matrices such as natural rubber, polypropylene, polyurethane, polyvinyl chloride, polyester, phenol formaldehyde, polystyrene, epoxy and LLDPE is discussed. Chapter 10 also focuses on... [Pg.9]

Carbon black Finely divided carbon made by incomplete combustion or decomposition of natural gas or petroleum-based oils in different types of equipment. According to the process and raw material used, it can be furnace (e.g., HAF), thermal (e.g., MT), or channel carbon black (e.g., EPC), each having different characteristics, such as particle size, structure, and morphology. The addition of different types of carbon blacks to rubber compounds results in different processing behavior and vulcanizate properties. [Pg.251]


See other pages where Natural rubber structure processing oils is mentioned: [Pg.484]    [Pg.143]    [Pg.480]    [Pg.706]    [Pg.484]    [Pg.669]    [Pg.275]    [Pg.205]    [Pg.1388]    [Pg.7]    [Pg.202]    [Pg.2]    [Pg.590]    [Pg.3]    [Pg.282]    [Pg.93]    [Pg.9]    [Pg.7606]    [Pg.10]    [Pg.1487]   
See also in sourсe #XX -- [ Pg.643 ]




SEARCH



Natural oils

Natural rubber processability

Natural structures

Oil processing

Oil structure

Process structure

Rubber oil

Rubber process oils

Rubber processing

Rubbers processability

© 2024 chempedia.info