Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural rubber processability

Originally, vulcanization implied heating natural rubber with sulfur, but the term is now also employed for curing polymers. When sulfur is employed, sulfide and disulfide cross-links form between polymer chains. This provides sufficient rigidity to prevent plastic flow. Plastic flow is a process in which coiled polymers slip past each other under an external deforming force when the force is released, the polymer chains do not completely return to their original positions. [Pg.1011]

Natural rubber, cis-1,4-polyisoprene, cross-linked with sulfur. This reaction was discovered by Goodyear in 1839, making it both historically and commercially the most important process of this type. This reaction in particular and crosslinking in general are also called vulcanization. [Pg.137]

Natural Rubber. To obtain natural mbber (NR), the Hevea hrasiliensis tree is tapped for its sap. The off-white sap is collected and coagulated. This process produces a high molecular weight substance which is natural mbber. The principal producing countries are Malaysia, Indonesia, Thailand, India, China, and Sri Lanka (see Rubber, natural). [Pg.231]

Table 4. Grades of Superior Processing Natural Rubber... Table 4. Grades of Superior Processing Natural Rubber...
Natural rubber displays the phenomenon known as natural tack. When two clean surfaces of masticated rubber (rubber whose molecular weight has been reduced by mechanical shearing) are brought into contact the two surfaces become strongly attached to each other. This is a consequence of interpenetration of molecular ends followed by crystallisation. Amorphous rubbers such as SBR do not exhibit such tack and it is necessary to add tackifiers such as rosin derivatives and polyterpenes. Several other miscellaneous materials such as factice, pine tar, coumarone-indene resins (see Chapter 17) and bitumens (see Chapter 30) are also used as processing aids. [Pg.284]

Compared with the natural material, raw SBR is more uniform in a variety of ways. Not only is it more uniform in quality so that compounds are more consistent in both processing and product properties but it is also more uniform in the sense that it usually contains fewer undesired contaminants. In addition, over a period of years it has been generally less subject to large price variations. These differences in uniformity have, however, tended to lessen with the advent of improved grades of natural rubber such as Standard Malaysian Rubber which have appeared in recent years. [Pg.293]

Plasticised PVC, referred to below as PPVC, is used in a wide variety of applications. Originally a substitute for natural rubber when the latter material became difficult to obtain during World War II, it is frequently the first material to consider where a flexible, even moderately rubbery, material is desired. This arises from the low cost of the compounds, their extreme processing versatility, their toughness and their durability. [Pg.357]

By rolling on a two-roll mill the molecular weight of the polymer can be greatly reduced by mechanical scission, analogous to that involved in the mastication of natural rubber, and so mouldable materials may be obtained. However, bulk polymerisation is expensive and the additional milling and grinding processes necessary make this process uneconomic in addition to increasing the risk of contamination. [Pg.404]

Some typical properties of a Vulkollan-type polyurethane cast rubber and a black-reinforced polyurethane rubber processed by conventional techniques are compared with black-reinforced natural and nitrile rubbers in Table 27.2 ... [Pg.788]

Vegetable waste L S P A Breweries Natural rubber Starch Sugar refineries Vegetable and fruit processing and preparation... [Pg.497]

Two processes to natural rubber PSA tapes are outlined in Fig. 3, starting from the mechanically broken down rubber. The first route compounds the rubber with... [Pg.473]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

Solid SBR is often prefened to natural rubber because of its better thermal oxidative stability, higher abrasion resistance and easier processability. Solid SBRs are generally grouped into three families according to the production method. [Pg.587]

Hydrogen fluoride reacts witlr metal carbonates, oxides, and hydroxides. Accumulation of these fluoride compounds can render valves and other close-fitting moving parts inoperable in a process system, causing possible equipment or process failures. Hydrogen fluoride also attacks glass, silicate ceramics, leather, natural rubber, and wood, but does not promote their combustion. [Pg.271]

Natural rubber was the only polymer for elastomer production until the advent of synthetics. Natural rubber, however, continues to maintain its competitive edge due mainly to the gain in properties such as high resilience, low hysteresis, low heat buildup, and excellent tack with mechanical properties achieved through the process of vulcanization [114-115]. The industry is said to be self-sufficient with a good technological base and is expected to compete successfully with synthetics because of the edge in properties mentioned above [116,117]. [Pg.417]

Anorin-38 has also shown an interesting effect as a multifunctional additive (a single additive to replace many of the conventional additives) for natural rubber (NR). It showed excellent blending behavior and compatibility with NR. Aorin-38 enhances the tensile properties and percent elongation, decreases fatigue, acts as an antioxidant and antiozonant, and positively affects many of the other properties, apart from acting as a process aid and a cure enhancer [183-186]. [Pg.428]


See other pages where Natural rubber processability is mentioned: [Pg.36]    [Pg.333]    [Pg.36]    [Pg.333]    [Pg.347]    [Pg.408]    [Pg.12]    [Pg.270]    [Pg.271]    [Pg.1415]    [Pg.1830]    [Pg.9]    [Pg.73]    [Pg.153]    [Pg.282]    [Pg.286]    [Pg.288]    [Pg.289]    [Pg.290]    [Pg.293]    [Pg.305]    [Pg.840]    [Pg.451]    [Pg.455]    [Pg.473]    [Pg.484]    [Pg.513]    [Pg.530]    [Pg.634]    [Pg.787]    [Pg.408]    [Pg.365]    [Pg.105]    [Pg.474]    [Pg.512]    [Pg.632]    [Pg.128]   
See also in sourсe #XX -- [ Pg.492 ]




SEARCH



Natural Rubber Production Processes

Natural rubber structure processing oils

Radiation Processing of Natural Rubber with Vinyl Plastics

Rubber processing

Rubbers processability

Superior Processing natural rubber

© 2024 chempedia.info