Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nanostructured material surface

Application of Fourier Transform Infrared Spectroscopy to Nanostructured Materials Surface Characterization... [Pg.312]

An excellent, accessible overview of what surface scientists do, the problems they address and how they link to technological needs is in a published lecture by a chemist, Somorjai (1998). He concisely sets out the function of numerous advanced instruments and techniques used by the surface scientist, all combined with UHV (LEED was merely the first), and exemplifies the kinds of physical chemical issues addressed - to pick just one example, the interactions of co-adsorbed species on a surface. He also introduces the concept of surface materials , ones in which the external or internal surfaces are the key to function. In this sense, a surface material is rather like a nanostructured material in the one case the material consists predominantly of surfaces, in the other case, of interfaces. [Pg.410]

How can such problems be counterbalanced Since a large capacitance of a semiconductor/electrolyte junction will not negatively affect the PMC transient measurement, a large area electrode (nanostructured materials) should be selected to decrease the effective excess charge carrier concentration (excess carriers per surface area) in the interface. PMC transient measurements have been performed at a sensitized nanostructured Ti02 liquidjunction solar cell.40 With a 10-ns laser pulse excitation, only the slow decay processes can be studied. The very fast rise time cannot be resolved, but this should be the aim of picosecond studies. Such experiments are being prepared in our laboratory, but using nanostructured... [Pg.505]

Nano-composites (NCs) are materials that comprise a dispersion of particles of at least one of their dimentions is 100 nm or less in a matrix. The matrix may be single or multicomponent. It may include additional materials that add other functionalities to the system such as reinforcement, conductivity and toughness (Alexandre and Dubois, 2000). Depending on the matrix, NCs may be metallic (MNC), ceramic (CNC) or polymeric (PNC) materials. Since many important chemical and physical interactions are governed by surface properties, a nanostructured material could have substantially different properties from large dimensional material of the same composition (Hussain et ah, 2007). [Pg.31]

When any materials interact with their environment through solid/gas, solid/liquid, and solid/solid interfaces, the nanometer scale surface created can easily be modified to perform certain functions. The modifications are usually only effective in the few nanometer deep surface layers. This chapter highlights the development of new model nanostructured materials with functionalized interfaces to... [Pg.77]

U. Kreibig, H. Botmematm, J. Hormes, Nanostructured materials, micelles and colloids, in H. S. Nalwa (ed.) Handbook of Surfaces and Interfaces of Materials, Vol. 3, Academic Press, San Diego, 2001, 1. [Pg.319]

Developments in modern CVD allow to improve the deposition of thin films and bulky coatings nevertheless, an additional major issue remains the building of nanostructured materials such as ultra-thin films or dispersed nanoparticles. For these applications, the control of the deposit at the atomic or nano-scale level is essential. Consequently, the role of surface chemistry occurring between the CVD precursor and the substrate, as well as the gas-phase main physical properties have to be indisputably clarified. [Pg.148]

Nanostructured materials have also been formed by scanning tunneling microscopy (STM) [24], scanning electrochemical microscopy (SECM) [25], and atomic force microscopy (AFM) [26], Recent reports on the modification of atomic sites at bare surfaces by STM [27] and the formation of nanometer-scale defects by STM [28] and AFM [29] illustrate the power of these techniques. [Pg.5]

Similar monolayers have been prepared with a diversity of electroactive units with the ultimate goal of elucidating the subtle balance between the structural and the electronic factors that regulate interfacial electron transfer.5,9,10 In particular, these studies have focused their attention on the rationalization of the influence that the distance between the electrode surface and the redox centers as well as the nature of the linkers between them have on the rates of electron transfer. In parallel to these fundamental investigations, the ability of thiols to anchor electroactive units on metallic electrodes has also been exploited to fabricate a wealth of nanostructured materials with tailored functions and properties.6-8 Indeed, these convenient building... [Pg.187]


See other pages where Nanostructured material surface is mentioned: [Pg.262]    [Pg.241]    [Pg.241]    [Pg.148]    [Pg.251]    [Pg.93]    [Pg.444]    [Pg.368]    [Pg.188]    [Pg.44]    [Pg.102]    [Pg.240]    [Pg.124]    [Pg.159]    [Pg.13]    [Pg.71]    [Pg.96]    [Pg.243]    [Pg.106]    [Pg.141]    [Pg.145]    [Pg.599]    [Pg.609]    [Pg.441]    [Pg.145]    [Pg.82]    [Pg.85]    [Pg.78]    [Pg.223]    [Pg.3]    [Pg.88]    [Pg.138]   


SEARCH



Material surface

Nanostructural materials

Nanostructured materials

Nanostructured surfaces

Surface nanostructured surfaces

© 2024 chempedia.info