Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nano-clays melt intercalation

Layered clay nano composites have been prepared by melt intercalation for a variety of polymers, including polystyrene [221], nylon-6 [222], ethylene-vinyl acetate copolymers [223], polypropylene [224], polyimide [225], poly(styrene-fo-butadiene) [226], and PEO [227],... [Pg.683]

Layered siUcate/polypropylene nanocomposites were prepared by melt intercalation method. Homopolymers PP alone and maleic anhydride-grafted polypropylene (PPgMA) as a compatibiUzer were used as the matrix. Clay (Na montmorillonite, MMT) particles were used to obtain silicate nano-layers within the PP matrix. Structural modification of MMT... [Pg.275]

These materials, unlike the other nanophase materials described in this chapter, are nano-sized in only one dimension and thereby act as nanoplatelets that sandwich polymer chains in composites. Mont-morillonite (MMT) is a well-characterized layered silicate that can be made hydrophobic through either ionic exchange or modification with organic surfactant molecules to aid in dispersion [5,23]. Polymer-layered silicates may be synthesized by exfoliation adsorption, in situ intercalative polymerization, and melt intercalation to yield three general types of polymer/clay nanocomposites. Intercalated structures are characterized as alternating polymer and siHcate layers in an ordered pattern with a periodic space between layers of a few nanometers [13], ExfoHated or delaminated structure occurs when silicate layers are uniformly distributed throughout the polymer matrix. In some cases, the polymer does not intercalate... [Pg.632]

Silicone rubber nano composites have been prepared by solution blending, melt intercalation and in-situ polymerization modified clay [125, 142, 143,172, 173]. The maximal tensile strength and compressive strength of CTAB modified MMT (6 wt%)/phenylmethylsilicone nanocomposite in comparison to pure silicone are found to be five and four times higher respectively [41]. Wang et al. [143] used CTAB-modified MMT in the synthesis of silicone rubber nanocomposites and concluded that the tensile strength of... [Pg.96]

Examples of the synthesis of polysiloxane nanocomposites reported in the literature include Work by Ma et al (6) who modified montmorilIonite with short segments of PDMS and blended this into a polymer melt/solution to yield examples of fully exfoliated or intercalated PDMS/clay nanocomposites. Pan, Mark et al (7) synthesized well defined nano-fillers by reacting groups of four vinyl terminated POSS cages with a central siloxane core. These materials were subsequently chemically bonded into a PDMS network yielding a significant improvement in the mechanical properties of the polymer. [Pg.264]

Choi and Chung [16] were the first to prepare phenolic resin/layered sihcate nanocomposites with intercalated or exfoliated nanostructures by melt interaction using linear novolac and examined their mechanical properties and thermal stability. Lee and Giannelis [10] reported a melt interaction method for phenolic resin/clay nanocomposites, too. Although PF resin is a widely used polymer, there are not many research reports on PF resin/montmorillonite nanocomposites, and most of the research investigations have concentrated on linear novolac resins. Up to now, only limited research studies on resole-type phenolic resin/layered silicate nanocomposites have been published [17-19] and there is still no report on the influence of nano-montmorillonite on phenolic resin as wood adhesive. Normally H-montmorillonite (HMMT) has been used as an acid catalyst for the preparation of novolac/layered silicate nanocomposites. Resole resins can be prepared by condensation reaction catalyzed by alkaline NaMMT, just as what HMMT has done for novolac resins. [Pg.237]

The dispersion of clay platelets (exfoliation and intercalation level of the silicate layers) and surface area of silicate platelets have the potential to alter the rheological behavior of the nanocomposites. In-situ polymerized nano composites exhibit more exfoliated structure than the composites prepared by the melt blending technique. Irrespective of the processing parameter, the nanocomposites show shear thinning behavior at high shear rate (Figure 9.14), whereas the pristine polyamide exhibits Newtonian behavior (i.e., the viscosity remains almost the same). It has also been reported that the polymer nanocomposite possesses higher steady shear viscosity than pristine polyamide at low shear rates. [Pg.282]


See other pages where Nano-clays melt intercalation is mentioned: [Pg.36]    [Pg.429]    [Pg.132]    [Pg.610]    [Pg.195]    [Pg.40]    [Pg.299]    [Pg.330]    [Pg.735]    [Pg.1604]    [Pg.2]    [Pg.2218]    [Pg.316]    [Pg.1273]    [Pg.308]    [Pg.329]    [Pg.148]    [Pg.212]    [Pg.196]    [Pg.197]    [Pg.223]    [Pg.365]   
See also in sourсe #XX -- [ Pg.497 ]




SEARCH



Clay intercalates

Clays intercalated

Intercalation clays

Melt intercalation

Nano-clays

Nano-clays intercalates

© 2024 chempedia.info