Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mutual solubility components

The volume of substance in a composite material that exists in a nonequilibrium state due to its proximity to an interface has been termed an interphase [1]. The interphase is a zone of distinct composition and properties formed by chemical or physical processes such as interdiffusion of mutually soluble components or chemical interaction between reactive species. [Pg.433]

What is phase competition in the process of a solid-state reaction. Consider a diffusion couple of two mutually soluble components A/B, which diffuse into each other forming intermediate phases and, possibly, a solid solution, beta binary system A-B have three stable intermediate phases 1, 2, 3, a metastable compound 4, and an amorphous phase 5. The dependence of the Gibbs free energy on the composition of these phases is given in Figure 4.1. [Pg.61]

In this chapter the term blend is used to denote a simple mixture of two mutually soluble components. [Pg.21]

To illustrate the criterion for parameter estimation, let 1, 2, and 3 represent the three components in a mixture. Components 1 and 2 are only partially miscible components 1 and 3, as well as components 2 and 3 are totally miscible. The two binary parameters for the 1-2 binary are determined from mutual-solubility data and remain fixed. Initial estimates of the four binary parameters for the two completely miscible binaries, 1-3 and 2-3, are determined from sets of binary vapor-liquid equilibrium (VLE) data. The final values of these parameters are then obtained by fitting both sets of binary vapor-liquid equilibrium data simultaneously with the limited ternary tie-line data. [Pg.67]

The solvent components usually have a low mutual solubility and are present in reasonably large mole fractions in the system. If solvents are not so designated, we take as the "solvent components" those two components, present in significant mole fraction in the system, that have the lowest binary solubilities. ... [Pg.124]

Solubility Parameter. CompatibiHty between hydrocarbon resins and other components in an appHcation can be estimated by the Hildebrand solubiHty parameter (2). In order for materials to be mutually soluble, the free energy of mixing must be negative (3). The solubiHty of a hydrocarbon resin with other polymers or components in a system can be approximated by the similarities in the solubiHty parameters of the resin and the other materials. Tme solubiHty parameters are only available for simple compounds and solvents. However, parameters for more complex materials can be approximated by relative solubiHty comparisons with substances of known solubiHty parameter. [Pg.350]

Three components A, B and C of an alloy dissolve completely when liquid but have no mutual solubility when solid. They do not form any chemical compounds. How many phases, and of what compositions, do you think would appear in the solid state ... [Pg.324]

To extract a desired component A from a homogeneous liquid solution, one can introduce another liquid phase which is insoluble with the one containing A. In theory, component A is present in low concentrations, and hence, we have a system consisting of two mutually insoluble carrier solutions between which the solute A is distributed. The solution rich in A is referred to as the extract phase, E (usually the solvent layer) the treated solution, lean in A, is called the raffinate, R. In practice, there will be some mutual solubility between the two solvents. Following the definitions provided by Henley and Staffin (1963) (see reference Section C), designating two solvents as B and S, the thermodynamic variables for the system are T, P, x g, x r, Xrr (where P is system pressure, T is temperature, and the a s denote mole fractions).. The concentration of solvent S is not considered to be a variable at any given temperature, T, and pressure, P. As such, we note the following ... [Pg.320]

A wide variety of physical properties are important in the evaluation of ionic liquids (ILs) for potential use in industrial processes. These include pure component properties such as density, isothermal compressibility, volume expansivity, viscosity, heat capacity, and thermal conductivity. However, a wide variety of mixture properties are also important, the most vital of these being the phase behavior of ionic liquids with other compounds. Knowledge of the phase behavior of ionic liquids with gases, liquids, and solids is necessary to assess the feasibility of their use for reactions, separations, and materials processing. Even from the limited data currently available, it is clear that the cation, the substituents on the cation, and the anion can be chosen to enhance or suppress the solubility of ionic liquids in other compounds and the solubility of other compounds in the ionic liquids. For instance, an increase in allcyl chain length decreases the mutual solubility with water, but some anions ([BFJ , for example) can increase mutual solubility with water (compared to [PFg] , for instance) [1-3]. While many mixture properties and many types of phase behavior are important, we focus here on the solubility of gases in room temperature IFs. [Pg.81]

In a fundamental sense, the miscibility, adhesion, interfacial energies, and morphology developed are all thermodynamically interrelated in a complex way to the interaction forces between the polymers. Miscibility of a polymer blend containing two polymers depends on the mutual solubility of the polymeric components. The blend is termed compatible when the solubility parameter of the two components are close to each other and show a single-phase transition temperature. However, most polymer pairs tend to be immiscible due to differences in their viscoelastic properties, surface-tensions, and intermolecular interactions. According to the terminology, the polymer pairs are incompatible and show separate glass transitions. For many purposes, miscibility in polymer blends is neither required nor de-... [Pg.649]

In homogeneous process the components of the reaction mixture are mutually soluble including a homogeneous catalysts if used. Mixing of reactants is necessary if the process to be carried out either (1) consists of a series of reactions of which the rates differ significantly and at least one of the important reactions is very fast, or (2) is exothermic and fast enough to produce problems with removal of heat from the reaction zone to the surroundings. [Pg.260]

The meaning of the surface excess is illustrated in Fig. 1, in which the solid line represents the actual concentration profile of an adsorbate i, when the bulk concentration of i in the phase a (a = O or W) is c . The hatched area corresponds to be the surface excess of i, T,. This quantity depends on the location of the dividing surface. On the other hand, the experimentally accessible quantity should not depend on the location of the artificially introduced dividing surface. The relative surface excess, which is independent of the location of the dividing surface, is defined by relativizing it with respect to those of certain reference components. In oil water interfaces, the mutual solubility of solvents can be significant. The relative surface excess in Eq. (3) is then related to the surface excesses through... [Pg.121]

Experimental data, or predictions, that give the distribution of components between the two solvent phases, are needed for the design of liquid-liquid extraction processes and mutual solubility limits will be needed for the design of decanters, and other liquid-liquid separators. [Pg.348]

As the components in a liquid mixture become more chemically dissimilar, their mutual solubility decreases. This is characterized by an increase in their activity coefficients (for positive deviation from Raoult s Law). If the chemical dissimilarity, and the corresponding increase in activity coefficients, become large enough, the solution can separate into two-liquid phases. [Pg.70]

A large volume (11.25 m3) of mixed fatty acids was to be bleached by treatment with successive portions of 50 wt% hydrogen peroxide. 2-Propanol (450 1) was added to the acids (to improve the mutual solubility of the reactants). The first 20 1 portion of peroxide (at 51°C) was added, followed after 1 min by a second portion. Shortly afterwards an explosion occurred, which was attributed to spontaneous ignition of a 2-propanol vapour-oxygen mixture formed above the surface of the liquid. Oxygen is almost invariably evolved from hydrogen peroxide reactions, and volatile flammable solvents are therefore incompatible components in peroxide systems. [Pg.1640]

Chapter 18 - The determination region of solubility of methanol with gasoline of high aromatic content was investigated experimentally at temperature of 288.2 K. A type 1 liquid-liquid phase diagram was obtained for this ternary system. These results were correlated simultaneously by the UNIQUAC model. By application of this model and the experimental data the values of the interaction parameters between each pair of components in the system were determined. This revealed that the root mean square deviation (RMSD) between the observed and calculated mole percents was 3.57% for methylcyclohexane + methanol + ethylbenzene. The mutual solubility of methylcyclohexane and ethylbenzene was also demostrated by the addition of methanol at 288.2 K. [Pg.15]

Following this methodology the mutual solubility of atoms-components was evaluated in many (over a thousand) simple and complex systems. The calculation results agree with reference and experimental data. [Pg.109]

The diagrams that will be mainly considered are those concerning the behaviour of the alloys in the liquid and solid states that is, melting and solid-state transformation diagrams. A number of different diagram types can be defined and classified on the basis of the different mutual solubility of the components (in the liquid and in the solid state with the formation of more or less extended liquid and/or solid solutions) and of their reactivity, resulting in the formation of various, so-called intermediate phases . [Pg.8]

Figure 2.1. Examples of melting phase diagrams of binary systems showing complete mutual solubility in the solid and in the liquid states (L liquid field, S solid field). The melting behaviour of the Mo-V, Cs-Rb and Ca-Sr alloys is presented. Notice the different ranges of temperature involved. The melting points of the pure metal components are shown on the corresponding vertical axes. The Cs-Rb is an example of a system showing a minimum in the melting temperature. In the Sr-Ca system complete mutual solid solubility is shown in both the allotropic forms a and (3 of the two metals. Figure 2.1. Examples of melting phase diagrams of binary systems showing complete mutual solubility in the solid and in the liquid states (L liquid field, S solid field). The melting behaviour of the Mo-V, Cs-Rb and Ca-Sr alloys is presented. Notice the different ranges of temperature involved. The melting points of the pure metal components are shown on the corresponding vertical axes. The Cs-Rb is an example of a system showing a minimum in the melting temperature. In the Sr-Ca system complete mutual solid solubility is shown in both the allotropic forms a and (3 of the two metals.
Figure 2.9. Examples of melting phase diagrams of binary systems showing complete mutual solubility in the liquid state and, at high temperature only, in the solid state. By lowering the temperature, however, the continuous solid solution decomposes into two phases. In (d) a schematic representation of NiAu or PtAu type diagrams is shown as formed by two generic components A and B. Figure 2.9. Examples of melting phase diagrams of binary systems showing complete mutual solubility in the liquid state and, at high temperature only, in the solid state. By lowering the temperature, however, the continuous solid solution decomposes into two phases. In (d) a schematic representation of NiAu or PtAu type diagrams is shown as formed by two generic components A and B.
Solubility Diagrams effects of atomic properties on mutual solubility. The effect on mutual solubility of the atomic properties of the components (and therefore of their relative positions on the map shown in Fig. 2.8) may be considered on the basis also of different diagrams. [Pg.28]

Almost all the crystalline materials discussed earlier involve only one molecular species. The ramifications for chemical reactions are thereby limited to intramolecular and homomolecular intermolecular reactions. Clearly the scope of solid-state chemistry would be vastly increased if it were possible to incorporate any desired foreign molecule into the crystal of a given substance. Unfortunately, the mutual solubilities of most pairs of molecules in the solid are severely limited (6), and few well-defined solid solutions or mixed crystals have been studied. Such one-phase systems are characterized by a variable composition and by a more or less random occupation of the crystallographic sites by the two components, and are generally based on the crystal structure of one component (or of both, if they are isomorphous). [Pg.193]

For the two-component, two-phase liquid system, the question arises as to how much of each of the pure liquid components dissolves in the other at equilibrium. Indeed, some pairs of liquids are so soluble in each other that they become completely miscible with each other when mixed at any proportions. Such pairs, for example, are water and 1-propanol or benzene and carbon tetrachloride. Other pairs of liquids are practically insoluble in each other, as, for example, water and carbon tetrachloride. Finally, there are pairs of liquids that are completely miscible at certain temperatures, but not at others. For example, water and triethylamine are miscible below 18°C, but not above. Such pairs of liquids are said to have a critical solution temperature, For some pairs of liquids, there is a lower (LOST), as in the water-tiiethylamine pair, but the more common behavior is for pairs of liquids to have an upper (UCST), (Fig. 2.2) and some may even have a closed mutual solubility loop [3]. Such instances are rare in solvent extraction practice, but have been exploited in some systems, where separations have been affected by changes in the temperature. [Pg.43]

The mutual solubility of two liquids A and B depends, in general, on how much the molecules of each liquid tend to attract those of its own kind, relative to their tendency to attract those of the other. This tendency is measured by the excess Gibbs energy of mixing of the two liquids (see section 2.4), Am gL, which is related to the partial vapor pressures p/ and of the two liquids A and B in the mixture. If the composition of the system is given by and Wb moles of the respective components in a given phase, their mole fractions in this phase are... [Pg.44]

Figure 10.16 is characteristic for most mixtures in which the mutual solubility of the components is limited. From Fig. 10.16 it is... [Pg.448]

If the original liquids are mutually soluble and the third component is soluble in only one of them, the mutual solubility will be diminished by its addition—according to Nernst s law, at low concentrations. The rise or fall of interfacial tension will thus depend on two superimposed effects, the change of surface tension of the better solvent owing to addition of the solute, and that in each of the two liquids due to diminished concentration of the other. The latter effect tends to increase the tension while the former may work in either direction. [Pg.105]

If the original liquids are again partially miscible, and the added component soluble in either the mutual solubility may be increased if so the interfacial tension will probably diminish whatever may be the effect on the surface tensions of the two pure liquids. Clearly, if sufficient of the third component be added to make the two phases completely soluble the interfacial tension must disappear altogether. [Pg.105]

Because of their low solubilities in the aqueous phase, the hydroformylation of higher alkenes (>C2) is still a challenging problem. In addition to fluorous biphasic catalysis, possible solutions, which have been addressed, include the addition of surfactants240,241 or the use of amphiphilic ligands242-244 to enhance mutual solubility or mobility of the components across the phase boundary and thereby increase the rate of reaction. The use of polar solvents such as alcohols,245 p-cyclodextrin,246 cyclodextrin ligands,247 248 thermoregulated phase-transfer... [Pg.388]


See other pages where Mutual solubility components is mentioned: [Pg.127]    [Pg.162]    [Pg.497]    [Pg.258]    [Pg.821]    [Pg.73]    [Pg.207]    [Pg.303]    [Pg.260]    [Pg.4]    [Pg.50]    [Pg.201]    [Pg.174]    [Pg.77]    [Pg.109]    [Pg.111]    [Pg.457]    [Pg.457]    [Pg.94]   
See also in sourсe #XX -- [ Pg.28 , Pg.29 ]




SEARCH



Mutual

Mutual solid solubility of the component metals in alloy systems

Mutual solubility

Mutualism

Mutuality

© 2024 chempedia.info