Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase complete solubility

If the original liquids are again partially miscible, and the added component soluble in either the mutual solubility may be increased if so the interfacial tension will probably diminish whatever may be the effect on the surface tensions of the two pure liquids. Clearly, if sufficient of the third component be added to make the two phases completely soluble the interfacial tension must disappear altogether. [Pg.105]

Figure 6.5 The appearence of spinodal decomposition as the temperature is lowered from a range of complete solubility, to the separation of two phases. In the range of composition between the inflection points, the equilibrium spinodal phases should begin to separate... Figure 6.5 The appearence of spinodal decomposition as the temperature is lowered from a range of complete solubility, to the separation of two phases. In the range of composition between the inflection points, the equilibrium spinodal phases should begin to separate...
Fig. 3.6. (a) The copper-nickel diagram is a good deal simpler than the lead-tin one, largely because copper and nickel are completely soluble in one another in the solid state. (b) The copper-zinc diagram is much more involved than the lead-tin one, largely because there are extra (intermediate) phases in between the end (terminal] phases. However, it is still an assembly of single-phase and two-phase fields. [Pg.31]

All of the chemical species, except one, will be assumed to be completely soluble. The one partially insoluble species will nucleate and grow a solid phase. A typical example is A + B ->P where P is a sparingly soluble compound. The rates of nucleation J and molecular surface growth G can be functions of the local concentration vector c, the particle size l, and the local turbulence properties. Neglecting aggregation and breakage processes, a microscopic PBE for this system can be written as follows ... [Pg.275]

In a similar way, another single-phase field (L) exists at high temperature the two components show, indeed, a mutual complete solubility in the liquid state also. [Pg.8]

Conventional Systems. In the conventional antifouling compositions, the organotin compound (TBTO, TBTF, TBTC1, TBTOAc) is mechanically mixed into the paint vehicle. When the TBT species is completely soluble in the polymer matrix, factors (a) and (b) become unimportant in most cases. The mobile species is already present its diffusion in the matrix, phase transfer and migration across the boundary layer into the ocean environment may be represented by Figure 2a. When the organotin compound forms a dispersed second phase, rate of its dissolution in the polymer matrix becomes another factor to consider. [Pg.172]

In the above reaction, the water soluble nucleophile was dissolved in an aqueous NaOH solution. The phase-transfer catalyst, (C2H5)4N+C1, allows for the transfer of the nucleophile as an ion-pair (PyO-(C2H )4N+) into the organic phase where later reaction with the organic reagent, Ar-CO-Cl occurred. Migration of the cationic catalyst back to the aqueous phase completed the cycle, which continued until the nucleophile, PyO-, or the organic compound, Ar- -Cl, have been completely consumed. 0... [Pg.212]

Line compounds. These are phases where sublattice occupation is restricted by particular combinations of atomic size, electronegativity, etc., and there is a well-defined stoichiometry with respect to the components. Many examples occur in transition metal borides and silicides, III-V compounds and a number of carbides. Although such phases are considered to be stoichiometric in the relevant binary systems, they can have partial or complete solubility of other components with preferential substitution for one of the binary elements. This can be demonstrated for the case of a compound such as the orthorhombic Cr2B-type boride which exists in a number or refractory metal-boride phase diagrams. Mixing then occurs by substitution on the metal sublattice. [Pg.120]

Fluorapatite is a highly insoluble calcium phosphate phase. The solubility product of stoichiometric fluorapatite at 37°C is 3.19 0.14x10 " mol 1 (for Cas(P04)3F as reported by Moreno et al. [53]) and appears significantly lower than that of HA in the same conditions (7.36 0.93 x 10 ° mol for Ca5(P04)30H). Asuggested explanation for this very low solubility product is that cohesive forces are stronger in fluorapatite than in other apatites due to smaller unit-cell dimensions. The complete solid solution Ca-,o(P04)6(OH)2-xFx can be obtained. Initial solubility determinations have shown a solubility minimum for x close to 1 [54], related to the formation of hydrogen bonding between F and OH ions. These results were subsequently... [Pg.296]

Foster Wheeler Development Corporation (FWDC) has designed a transportable transpiring wall supercritical water oxidation (SCWO) reactor to treat hazardous wastes. As water is subjected to temperatures and pressures above its critical point (374.2°C, 22.1 MPa), it exhibits properties that differ from both liquid water and steam. At the critical point, the liquid and vapor phases of water have the same density. When the critical point is exceeded, hydrogen bonding between water molecules is essentially stopped. Some organic compounds that are normally insoluble in liquid water become completely soluble (miscible in all proportions) in supercritical water. Some water-soluble inorganic compounds, such as salts, become insoluble in supercritical water. [Pg.596]

Figure 1. Cerium-iron phase diagram showing complete solubility in the liquid phase, zero solubility in the solid phases and one, single, low-melting point eutectic 92.5% Ce. Figure 1. Cerium-iron phase diagram showing complete solubility in the liquid phase, zero solubility in the solid phases and one, single, low-melting point eutectic 92.5% Ce.
The explanation for this behavior is similar to that given in the preceding section for nonionic surfactant mixtures. Adding a hydrophihc anionic surfactant raises the temperature at the cloud point and other phase transitions above those for pure Ci2(EO)4. If the amount of anionic added exceeds only slightly that needed for complete solubility, the final stages of the dissolution process are slow because preferential dissolution of the anionic causes the remaining drop to rise above its cloud point and nucleate small droplets of surfactant-rich liquid. But if the amount added is sufficiently large, drop composition remains below the cloud point in spite of preferential dissolution, with the result that dissolution is fast as with pure nonionic surfactants below their cloud points. [Pg.14]

Figure 2.3 Free energy of mixing curves for solid and liquid phases at various temperatures (a-e) and resulting temperature-composition phase diagram for a completely soluble binary component system (f). From O. F. Devereux, Topics in Metallurgical Thermodynamics. Copyright 1983 by John Wiley Sons, hic. This material is used by permission of John Wiley Sons, Inc. Figure 2.3 Free energy of mixing curves for solid and liquid phases at various temperatures (a-e) and resulting temperature-composition phase diagram for a completely soluble binary component system (f). From O. F. Devereux, Topics in Metallurgical Thermodynamics. Copyright 1983 by John Wiley Sons, hic. This material is used by permission of John Wiley Sons, Inc.
The reaction of l- -butyl-3-methylimidazolium chloride (BMIC) with sodium tet-rafluoroborate or sodium hexafluorophosphate produced the room temperature-, air-and water-stable molten salts (BMr)(BF4 ) and (BMTXPFg ), respectively in almost quantitative yield. The rhodium complexes RhCKPPhjls and (Rh(cod)2)(BF4 ) are completely soluble in these ionic liquids and they are able to catalyze the hydrogenation of cyclohexene at 10 atm and 25°C in a typical two-phase catalysis with turnovers up to 6000 (see fig. 6.10). [Pg.172]

Cold aqueous sodium hypochlorite solution was investigated (10). Two separate treatments of the grafted wool with a two-phase toluene-5% aqueous sodium hypochlorite, each for about 24 hours, removed the wool and rendered the polystyrene completely soluble in benzene and toluene. Several samples of grafted wools prepared at both 10 and 18% methanol contents and at a range of dose rates were treated this way,... [Pg.239]


See other pages where Phase complete solubility is mentioned: [Pg.394]    [Pg.482]    [Pg.423]    [Pg.556]    [Pg.333]    [Pg.37]    [Pg.342]    [Pg.389]    [Pg.162]    [Pg.335]    [Pg.846]    [Pg.288]    [Pg.53]    [Pg.151]    [Pg.1328]    [Pg.1362]    [Pg.19]    [Pg.8]    [Pg.9]    [Pg.387]    [Pg.1030]    [Pg.90]    [Pg.74]    [Pg.609]    [Pg.1010]    [Pg.1021]    [Pg.299]    [Pg.452]    [Pg.457]    [Pg.490]    [Pg.815]    [Pg.135]   
See also in sourсe #XX -- [ Pg.471 ]




SEARCH



Ideal Binary Phase System with Both Solids Completely Soluble in One Another

© 2024 chempedia.info