Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mukaiyama selectivity

A few a/j/r -selective amide and imide enolates which arc able to provide high induced diastereo-selectivity have been uncovered very recently. The /V-propionylsultam 1 w hich opens a way to sryn-aldols as described in Section D.1.4.3.2.3.1. also allows the synthesis of r/nh-adducls. For this purpose. 1 is converted into the silyl-iV.O-ketene acetal 2 and subsequently added to aldehydes in a Mukaiyama-type aldol reaction106 to give awi-adducts 310<>f. [Pg.505]

Thus, the inherent selectivity of a chiral aldehyde is much stronger in Mukaiyama-type aldol reactions than in the additions of lithium or magnesium enolates17. [Pg.575]

Danshefsky s diene [19] is the 1,3-butadiene with amethoxy group at the 1-position and a trimethylsiloxy group at the 3-position (Scheme 18). This diene and Lewis acids extended the scope of hetereo-Diels-Alder reactions with aldehydes [20], This diene reacts with virtually any aldehyde in the presence of Lewis acids whereas dienes usually react with only selected aldehydes bearing strongly electron accepting a-substituents. There are two (Diels-Alder and Mukaiyama aldol) reaction pathways (Scheme 18) identified for the Lewis acids catalyzed reactions of Danishefsky diene with aldehydes [21, 22]. The two pathways suggest that these reactions occur on the boundary between the delocahzation band (the pericyclic... [Pg.69]

Another SBU with open metal sites is the tri-p-oxo carboxylate cluster (see Section 4.2.2 and Figure 4.2). The tri-p-oxo Fe " clusters in MIL-100 are able to catalyze Friedel-Crafts benzylation reactions [44]. The tri-p-oxo Cr " clusters of MIL-101 are active for the cyanosilylation of benzaldehyde. This reaction is a popular test reaction in the MOF Hterature as a probe for catalytic activity an example has already been given above for [Cu3(BTC)2] [15]. In fact, the very first demonstration of the catalytic potential of MOFs had aheady been given in 1994 for a two-dimensional Cd bipyridine lattice that catalyzes the cyanosilylation of aldehydes [56]. A continuation of this work in 2004 for reactions with imines showed that the hydrophobic surroundings of the framework enhance the reaction in comparison with homogeneous Cd(pyridine) complexes [57]. The activity of MIL-lOl(Cr) is much higher than that of the Cd lattices, but in subsequent reaction rans the activity decreases [58]. A MOF with two different types of open Mn sites with pores of 7 and 10 A catalyzes the cyanosilylation of aromatic aldehydes and ketones with a remarkable reactant shape selectivity. This MOF also catalyzes the more demanding Mukaiyama-aldol reaction [59]. [Pg.81]

Control of Facial Selectivity in Aldol and Mukaiyama Aldol Reactions... [Pg.86]

In the discussion of the stereochemistry of aldol and Mukaiyama reactions, the most important factors in determining the syn or anti diastereoselectivity were identified as the nature of the TS (cyclic, open, or chelated) and the configuration (E or Z) of the enolate. If either the aldehyde or enolate is chiral, an additional factor enters the picture. The aldehyde or enolate then has two nonidentical faces and the stereochemical outcome will depend on facial selectivity. In principle, this applies to any stereocenter in the molecule, but the strongest and most studied effects are those of a- and (3-substituents. If the aldehyde is chiral, particularly when the stereogenic center is adjacent to the carbonyl group, the competition between the two diastereotopic faces of the carbonyl group determines the stereochemical outcome of the reaction. [Pg.86]

Dipole-dipole interactions may also be important in determining the stereoselectivity of Mukaiyama aldol reactions proceeding through an open TS. A BF3-catalyzed reaction was found to be 3,5-anti selective for several (3-substituted 5-phenylpentanals. This result can be rationalized by a TS that avoids an unfavorable alignment of the C=0 and C-X dipoles.97... [Pg.96]

Summary of Facial Stereoselectivity in Aldol and Mukaiyama Reactions. The examples provided in this section show that there are several approaches to controlling the facial selectivity of aldol additions and related reactions. The E- or Z-configuration of the enolate and the open, cyclic, or chelated nature of the TS are the departure points for prediction and analysis of stereoselectivity. The Lewis acid catalyst and the donor strength of potentially chelating ligands affect the structure of the TS. Whereas dialkyl boron enolates and BF3 complexes are tetracoordinate, titanium and tin can be... [Pg.133]

In the synthesis shown in Scheme 13.15, racemates of both erythro- and threo-juvabione were synthesized by parallel routes. The isomeric intermediates were obtained in greater than 10 1 selectivity by choice of the E- or Z-silanes used for conjugate addition to cyclohexenone (Michael-Mukaiyama reaction). Further optimization of the stereoselectivity was achieved by the choice of the silyl substituents. The observed stereoselectivity is consistent with synclinal TSs for the addition of the crotyl silane reagents. [Pg.1181]

L2909>. An organocatalytic addition of 2-trimethylsilyloxyfuran to aldehydes using 10 mol% of l,3-bis(3-(trifluoromethyl)phenyl)urea provided adducts with modest threo selectivity <06TL8507>. A syn-selective, enantioselective, organocatalytic vinylogous Mukaiyama-Michael addition of 2-trimethylsilyloxyfuran to (E)-3-... [Pg.178]

In an early example, Mukaiyama and coworkers used hetaryl onium salts for nucleoside synthesis. The active hetaryl onium salt is generated in situ from the reaction of 2-chloro-3-ethylbenzoxazolium tetrafluoroborate 77 and the glycosyl acceptor. With benzimidazole as glycosyl acceptor, the resulting 2-(l-benzimida-zoyl)benzoxazolium tetrafluoroborate 78 was obtained. The reaction between the hetaryl onium salt 78 and hemiacetal donor 1 occurs at 60 °C to activate the hemiacetal and thereby reveal the glycosyl acceptor. This procedure led to the formation of nucleoside 80 with exclusive 1,2-trans selectivity [139]. The nucleoside 81 was similarly prepared. Alternatively, 2-fluoro-l-methylpyridinium tosylate 79 directly... [Pg.130]

The addition of an enolsilane to an aldehyde, commonly referred to as the Mukaiyama aldol reaction, is readily promoted by Lewis acids and has been the subject of intense interest in the field of chiral Lewis acid catalysis. Copper-based Lewis acids have been applied to this process in an attempt to generate polyacetate and polypropionate synthons for natural product synthesis. Although the considerable Lewis acidity of many of these complexes is more than sufficient to activate a broad range of aldehydes, high selectivities have been observed predominantly with substrates capable of two-point coordination to the metal. Of these, benzy-loxyacetaldehyde and pyruvate esters have been most successful. [Pg.114]

Mukaiyama Michael reactions of alkylidene malonates and enolsilanes have also been examined (244). The stoichiometric reaction between enolsilane (342a) and alkylidene malonate (383) proceeds in high selectivity however, catalyst turnover is not observed under these conditions. The addition of HFIP effectively promotes catalyst turnover, presumably by protonation and silyl transfer from the putative copper malonyl enolate generated in this reaction. The reaction proved general for bulky P-substituents (aryl, branched alkyl), Eq. 209. [Pg.124]

It is significant to note that this reaction is highly unusual since the prochiral element resides entirely on the nucleophile. The chiral Lewis acid exerts control of en-antiofacial selectivity by proctor through tight control of the presumed heterocycloaddition transition state, Scheme 27. In effect, extremely high fidelity is necessary to orient the 2n component with respect to the 4ji component coordinated to the chiral Lewis acid. The factors that control the diastereoselectivity in the Mukaiyama Michael reaction of crotonylimides could also control enantioselectivity in the amination reaction. That selectivities on the order of 99% ee are observed in this reaction is testament to the level of control exerted by these catalysts. [Pg.127]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

A Mukaiyama-type aldol reaction of silyl ketene thioacetal (48) with an aldehyde with large and small a-substituents (e.g. Ph and Me), catalysed by boron trifluoride etherate, gives mainly the iyn-isomer (49), i.e. Cram selectivity. For the example given, changing R from SiBu Me2 to Si(Pr )3 raises the syn preference considerably, which the authors refer to as the triisopropylsilyl effect. Even when the and R groups are as similar as ethyl and methyl, a syn. anti ratio of 5.4 was achieved using the triisopropylsilyl ketene thioacetal. [Pg.12]

Samarium and other lanthanide iodides have been used to promote a range of Mukaiyama aldol and Michael reactions. The syntheses show promise as enantio-selective transformations, but the precise mechanistic role of the lanthanide has yet to be elucidated. [Pg.12]

The elfectiveness of imidazolidinone of type 11 was confirmed by successful application to a broad range of chemical transformations, including cycloadditions, conjugate additions, Friedel-Crafts alkylations, Mukaiyama-Michael additions, hydrogenations, cyclopropanations, and epoxidations. A summary of these enantio-selective iminium catalyzed processes is provided by reaction subclass. [Pg.321]

Considerable effort has been devoted to finding Lewis acid or other catalysts that could induce high enantioselectivity in the Mukaiyama reaction. As with aldol addition reactions involving enolates, high diastereoselectivity and enantioselectivity requires involvement of a transition state with substantial facial selectivity with respect to the electrophilic reactant and a preferred orientation of the nucleophile. Scheme 2.4 shows some examples of enantioselective catalysts. [Pg.88]


See other pages where Mukaiyama selectivity is mentioned: [Pg.178]    [Pg.501]    [Pg.113]    [Pg.1219]    [Pg.425]    [Pg.156]    [Pg.518]    [Pg.5]    [Pg.133]    [Pg.134]    [Pg.141]    [Pg.123]    [Pg.52]    [Pg.64]    [Pg.67]    [Pg.67]    [Pg.178]    [Pg.5]    [Pg.178]    [Pg.69]    [Pg.107]    [Pg.223]    [Pg.362]    [Pg.461]    [Pg.44]    [Pg.223]    [Pg.88]    [Pg.286]    [Pg.385]    [Pg.306]   
See also in sourсe #XX -- [ Pg.216 ]




SEARCH



DAVID-MUKAIYAMA-UENO Selective Diol Oxidation

Mukaiyama

© 2024 chempedia.info