Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monosubstitutions development

The consequences of this point are developed for a number of monosubstituted cyclo hexane derivatives in the following section beginning with methylcyclohexane... [Pg.120]

The syntheses and spectroscopic and electrochemical characterization of the rhodium and iridium porphyrin complexes (Por)IVI(R) and (Por)M(R)(L) have been summarized in three review articles.The classical syntheses involve Rh(Por)X with RLi or RMgBr, and [Rh(Por) with RX. In addition, reactions of the rhodium and iridium dimers have led to a wide variety of rhodium a-bonded complexes. For example, Rh(OEP)]2 reacts with benzyl bromide to give benzyl rhodium complexes, and with monosubstituted alkenes and alkynes to give a-alkyl and fT-vinyl products, respectively. More recent synthetic methods are summarized below. Although the development of iridium porphyrin chemistry has lagged behind that of rhodium, there have been few surprises and reactions of [IrfPorih and lr(Por)H parallel those of the rhodium congeners quite closely.Selected structural data for rr-bonded rhodium and iridium porphyrin complexes are collected in Table VI, and several examples are shown in Fig. 7. ... [Pg.295]

Scheme 2.11 shows some examples of Robinson annulation reactions. Entries 1 and 2 show annulation reactions of relatively acidic dicarbonyl compounds. Entry 3 is an example of use of 4-(trimethylammonio)-2-butanone as a precursor of methyl vinyl ketone. This compound generates methyl vinyl ketone in situ by (3-eliminalion. The original conditions developed for the Robinson annulation reaction are such that the ketone enolate composition is under thermodynamic control. This usually results in the formation of product from the more stable enolate, as in Entry 3. The C(l) enolate is preferred because of the conjugation with the aromatic ring. For monosubstituted cyclohexanones, the cyclization usually occurs at the more-substituted position in hydroxylic solvents. The alternative regiochemistry can be achieved by using an enamine. Entry 4 is an example. As discussed in Section 1.9, the less-substituted enamine is favored, so addition occurs at the less-substituted position. [Pg.136]

A route to processible polyacetylene, devised initially using classical initiators (Scheme 1i) 576-578 has been developed using well-defined molybdenum initiators to prepare conjugated polymers.579-585 They have also been employed to prepare polyacetylene via the polymerization of cyclooctate-traene, COT,586 and by the isomerization of poly(benzvalene).587 588 Substituted, and hence soluble, polyacetylene derivatives may be synthesized by polymerizing monosubstituted COT substrates.589-591... [Pg.32]

The groups of Giacomelli and Taddei have developed a rapid solution-phase protocol for the synthesis of 1,4,5-trisubstituted pyrazole libraries (Scheme 6.194) [356]. The transformations involved the cyclization of a monosubstituted hydrazine with an enamino-/8-ketoester derived from a /8-ketoester and N,N-dimethylformamide dimethyl acetal (DMFDMA). The sites for molecular diversity in this approach are the substituents on the hydrazine (R3) and on the starting j3-keto ester (R1, R2). Subjecting a solution of the /8-keto ester in DMFDMA as solvent to 5 min of microwave irradiation (domestic oven) led to full and clean conversion to the corresponding enamine. After evaporation of the excess DMFDMA, ethanol was added to the crude reaction mixture followed by 1 equivalent of the hydrazine hydrochloride and 1.5 equivalents of triethylamine base. Further microwave irradiation for 8 min provided - after purification by filtration through a short silica gel column - the desired pyrazoles in >90% purity. [Pg.231]

In contrast, polar and resonance effects must be separated in order to analyze the data for a-substituted arylolefins [ArC(R)=CHR with R H]. Their bromination involves open carbocation intermediates only. Resonance effects cannot be fully developed at the transition states, since the aromatic ring is not in the same plane as that of the developing carbocation, because of steric constraints. Accordingly, application of (33) gives pT < pn. Attenuation of resonance arises mainly from stereochemical factors, at least in the monosubstituted 1,1-diphenylethylene [20] and a-methylstilbene [21] series the pr/pn ratios can be related to the dihedral angle between the substituted phenyl ring and the plane of the ethylenic bond. [Pg.254]

Hirama and co-workers71 developed another chiral bidentate ligand 92 for OsCU-mediated dihydroxylation of /m .v-disubstituted and monosubstituted olefins. As shown in Table 4-14, asymmetric dihydroxylation of olefins using (S,S)-(—)-92b as the chiral ligand provides excellent yield and enantioselectivity. [Pg.229]

Retention volumes of monosubstituted benzenes, benzoic acid, phenols, and anilines have been measured in RPLC [76]. Buffered acetonitrile/water and tetrahydrofuran/water eluents were used with an octadecylsilica adsorbent. From the net retention volumes, a substituent interaction effect was calculated and described with the linear free energy relationship developed by Taft. The data was interpreted in terms of hydrogen bonding between the solutes and the eluent. [Pg.537]

The synthesis and antibacterial properties of norfloxacin (2a) were described in 1980 [65]. In this key paper in the evolution of quinolone antibacterial agents, a series of 6,7,8-polysubstituted-l-ethyl-l,4-dihydro-4-oxoquinoline-3-carb-oxylic acids (13) was synthesized, employing previously developed quantitative structure-activity relationships (QSAR) for the corresponding 6-, 7- and 8-monosubstituted derivatives versus Escherichia coli. The QSAR analysis... [Pg.248]

Asymmetric allylic substitutions are widely applied in organic synthesis, using various metal complexes, chiral ligands, nucleophiles and allyl systems [39]. Although Pd is often the metal of choice, this is not the case for monosubstituted allylic substrates, where most Pd catalysts predominantly produce the achiral linear product. In contrast. Mo, W and Ir catalysts preferentially give rise to the desired branched products and, in recent years, a number of very effective Ir catalysts for various substrates have been developed [40]. Since, to the best of our... [Pg.10]

A comparison of various derivatives, where R and are either H or alkyl, revealed that Al-monosubstituted 6-aminouracils have little or no activity. Among the 1,3-dialkyl analogues, several Ci to C4 derivatives were highly active. Where R and R are methyl and propyl, the isomeric propyl methyl derivative shows comparable effectiveness. These activities are of the same order as those of aminophylline, but the toxicities are less than half as great. From these studies the drug amisometradine (Rolicton (LXVI), R = CHj C(Me)=CH2, R = Me) eventually developed. [Pg.309]

In 2003 Handy and coworkers [65] described the first synthesis of ionic liquids from naturally occurring sugars. They exploited the transformation of D-fructose (1) into monosubstituted imidazoles developed more than 50 years ago by Trotter and Darby [66], to prepare 2 in 61% yield (Scheme 1). [Pg.183]

This section describes further developments to May, 2007. A new topic relevant to thermodynamic aspects (Section 8.03.4.1) is solubility of pyrazine and its derivatives in supercritical carbon dioxide <2006CED2056>. A notable example of nucleophilic displacement of substituents (Section 8.03.5.4.2) is represented by highly selective monosubstitution of chloro substituent in 2,3-dichloropyrazine, which is converted by treatment with a-lithio ketones into a-(3-chloropyrazin-2-yl) ketones <2006T9919>. Similarly a-(chloropyrazinyl) acetic ester or acetonitrile derivatives are synthesized by using a-lithio acetic esters or acetonitriles, respectively. [Pg.322]


See other pages where Monosubstitutions development is mentioned: [Pg.18]    [Pg.52]    [Pg.329]    [Pg.314]    [Pg.612]    [Pg.250]    [Pg.55]    [Pg.1040]    [Pg.166]    [Pg.328]    [Pg.250]    [Pg.241]    [Pg.317]    [Pg.497]    [Pg.498]    [Pg.1337]    [Pg.57]    [Pg.53]    [Pg.366]    [Pg.870]    [Pg.267]    [Pg.269]    [Pg.463]    [Pg.264]    [Pg.398]    [Pg.293]    [Pg.506]    [Pg.35]    [Pg.630]    [Pg.352]    [Pg.558]    [Pg.329]    [Pg.481]    [Pg.490]    [Pg.398]   


SEARCH



Monosubstituted

Monosubstitution

© 2024 chempedia.info