Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomer methyl acrylate

Monomer Methyl acrylate Ethyl acrylate Butyl acrylate Acryhc acid... [Pg.157]

Commercial designation Monomers Methyl acrylate level Type of cure system... [Pg.498]

The results that have been found for these four monomers are rather surprising For three of the monomers, methyl acrylate, acrylic acid, and methacrylic acid, both BPO and AIBN will initiate the graft copolymerization while for methyl methacrylate only BPO gives a reasonable yield of the graft copolymer. Even more surprising is the fact that for the two esters, no ungrafted SBS is found while for the acids only a small amount of the SBS is actually involved in the graft copolymerization. [Pg.115]

The differences in the polymerization kinetics and colloidal behavior of polymerization systems based on monomers of different polarity may be illustrated (Bakaeva et al., 1966 Yeliseyeva and Bakaeva, 1968) by the polymerization of the model monomers, methyl acrylate and butyl methacrylate, at various concentrations of sodium alkylsulfonate (C,5H3 S03Na). The fact that the solubility of the monomers in water differs by two orders of magnitude (5.2 and 0,08/ , respectively) was used as a criterion of polarity. An additional advantage to comparing these two monomers is that their polymers have rather close glass transition temperatures which is important for coalescence of particles at later stages of polymerization. [Pg.261]

Modification of the surfaces of coUoidal silica spheres with silane coupling agents enables transfer of the particles to nonpolar solvents. With 3-methacryloxypropyltri-methoxysilane bonded to the surface, the particles have been transferred from water to the polymerizable monomer, methyl acrylate. Electrostatic repulsion due to a low level of residual charge on the particle surfaces cause the dilute dispersions of particles to form a non-close packed colloidal crystalline array (CCA). Polymerization of the methyl acrylate with 200 nm diameter silica spheres in a CC fixes the positions of the spheres in a plastic film by the reactions shown in Figure 11.14. The difriaction... [Pg.396]

Table 22 5. The Product of the Binary Copolymerization Parameters for the Free Radical Terpolymerization of the Conjugated Monomers Methyl Acrylate, Methyl Methacrylate, Acrylonitrile, and Styrene, as well as for the Nonconjugated Monomers Vinyl Acetate, Vinyl Chloride, and Vinylidene Chloride... Table 22 5. The Product of the Binary Copolymerization Parameters for the Free Radical Terpolymerization of the Conjugated Monomers Methyl Acrylate, Methyl Methacrylate, Acrylonitrile, and Styrene, as well as for the Nonconjugated Monomers Vinyl Acetate, Vinyl Chloride, and Vinylidene Chloride...
Acetylene can be reacted with carbon monoxide and methanol to produce the monomer methyl acrylate to produce EAM rubber. [Pg.380]

Uses Emulsifier, solubilizer for monomers (methyl acrylate), essential oils, insecticides, and emulsion polymerization Features 0/w Arlypon NP 12 [Cognis]... [Pg.127]

Poly (methyl Acrylate). The monomer used for preparing poly(methyl acrylate) is produced by the oxidation of propylene. The resin is made by free-radical polymerization initiated by peroxide or azo catalysts and has the following formula ... [Pg.1013]

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

The relatively low flash points of some acrylates create a fire hazard. Also, the ease of polymerization must be home in mind in ah. operations. The lower and upper explosive limits for methyl acrylate are 2.8 and 25 vol %, respectively. Corresponding limits for ethyl acrylate are 1.8 vol % and saturation, respectively. All possible sources of ignition of monomers must be eliininated. [Pg.157]

The molecular weight of a polymer can be controlled through the use of a chain-transfer agent, as well as by initiator concentration and type, monomer concentration, and solvent type and temperature. Chlorinated aUphatic compounds and thiols are particularly effective chain-transfer agents used for regulating the molecular weight of acryUc polymers (94). Chain-transfer constants (C at 60°C) for some typical agents for poly(methyl acrylate) are as follows (87) ... [Pg.167]

The monomer pair, acrylonitrile—methyl acrylate, is close to being an ideal monomer pair. Both monomers are similar in resonance, polarity, and steric characteristics. The acrylonitrile radical shows approximately equal reactivity with both monomers, and the methyl acrylate radical shows only a slight preference for reacting with acrylonitrile monomer. Many acrylonitrile monomer pairs fall into the nonideal category, eg, acrylonitrile—vinyl acetate. This is an example of a nonideality sometimes referred to as kinetic incompatibiUty. A third type of monomer pair is that which shows an alternating tendency. [Pg.278]

Fig. 2. Relationship between relative rate and monomer composition in the copolymerization of DAP with vinyl monomers A, styrene or methyl methacrylate B, methyl acrylate or acrylonitrile C, vinyl chloride D, vinyl acetate, and E, ethylene (41). Fig. 2. Relationship between relative rate and monomer composition in the copolymerization of DAP with vinyl monomers A, styrene or methyl methacrylate B, methyl acrylate or acrylonitrile C, vinyl chloride D, vinyl acetate, and E, ethylene (41).
Vinyhdene chloride copolymerizes randomly with methyl acrylate and nearly so with other acrylates. Very severe composition drift occurs, however, in copolymerizations with vinyl chloride or methacrylates. Several methods have been developed to produce homogeneous copolymers regardless of the reactivity ratio (43). These methods are appHcable mainly to emulsion and suspension processes where adequate stirring can be maintained. Copolymerization rates of VDC with small amounts of a second monomer are normally lower than its rate of homopolymerization. The kinetics of the copolymerization of VDC and VC have been studied (45—48). [Pg.430]

O.JVI. Scott Sons. The O.M. Scott Sons Co. (Scotts) has developed a series of coated products which utilize copolymer blends of vinyHdene chloride copolymerized with methyl methacrylates, acrylonitriles, methyl acrylates, and/or vinyHdene—vinyl chloride monomers. [Pg.137]

More recendy, Du Pont Co. has commercialized a new family of copolymers of just ethylene and methyl acrylate, where the cure-site monomer has been removed from the polymer backbone. [Pg.498]

Commercial Forms. Eour different base polymers of VAMAC ethylene—acryhc elastomer are commercially available (Table 1). Until 1990, existing grades of ethylene—acryhc elastomers were based on a single-gum polymer. VAMAC G, defined as a terpolymer of 55% methyl acrylate, ethylene, and a cure-site monomer (5). In 1991, a higher methyl acrylate terpolymer, VAMAC LS, was introduced. The composition of this polymer was specifically chosen because it significantly increases the oil resistance of the polymer while minimizing losses in low temperature fiexibihty (6). [Pg.498]

E is ethylene MA, methyl acrylate and CS, proprietary cure-site monomer. [Pg.498]

A terpolymer rubber was introduced by Du Pont in 1975 (Vamac). This is based on ethylene, methyl acrylate and a third, undisclosed, monomer containing carboxylic acid groups to act as the cure site (see Section 11.9). [Pg.277]

As already mentioned in previous sections ethylene may also be copolymerised with several non-hydrocarbon polymers. Some of these copolymers are elastomeric and they also have a measure of oil resistance. Two monomers used commercially are vinyl acetate and, the structurally very similar, methyl acrylate ... [Pg.301]

More recently, in 1975, Du Pont introduced a terpolymer (Vamac) based on ethylene, methyl acrylate and a third monomer of undisclosed composition which contained a carboxylic acid group to provide a cure site for use with peroxides or amines. Both types of rubber exhibit good heat, oxygen and ozone resistance. [Pg.301]

Interestingly, later grades of Vamac to become available did not employ the cure site monomer, using instead a peroxide-curing system. Some of these copolymers also contained higher levels of methyl acrylate (up to 69%) to enhance the oil resistance. [Pg.301]

The common feature of these materials was that all contained a high proportion of acrylonitrile or methacrylonitrile. The Vistron product, Barex 210, for example was said to be produced by radical graft copolymerisation of 73-77 parts acrylonitrile and 23-27 parts by weight of methyl acrylate in the presence of a 8-10 parts of a butadiene-acrylonitrile rubber (Nitrile rubber). The Du Pont product NR-16 was prepared by graft polymerisation of styrene and acrylonitrile in the presence of styrene-butadiene copolymer. The Monsanto polymer Lopac was a copolymer of 28-34 parts styrene and 66-72 parts of a second monomer variously reported as acrylonitrile and methacrylonitrile. This polymer contained no rubbery component. [Pg.416]

Because the polymer degrades before melting, polyacrylonitrile is commonly formed into fibers via a wet spinning process. The precursor is actually a copolymer of acrylonitrile and other monomer(s) which are added to control the oxidation rate and lower the glass transition temperature of the material. Common copolymers include vinyl acetate, methyl acrylate, methyl methacrylate, acrylic acid, itaconic acid, and methacrylic acid [1,2]. [Pg.120]

A substantial number of photo-induced charge transfer polymerizations have been known to proceed through N-vinylcarbazole (VCZ) as an electron-donor monomer, but much less attention was paid to the polymerization of acrylic monomer as an electron receptor in the presence of amine as donor. The photo-induced charge-transfer polymerization of electron-attracting monomers, such as methyl acrylate(MA) and acrylonitrile (AN), have been recently studied [4]. In this paper, some results of our research on the reaction mechanism of vinyl polymerization with amine in redox and photo-induced charge transfer initiation systems are reviewed. [Pg.227]

Polymers in Schemes 12 and 13 were the first examples of the preparation of pyridinium and iminopyridinium ylide polymers. One of the more recent contributions of Kondo and his colleagues [16] deals with the sensitization effect of l-ethoxycarbonyliminopyridinium ylide (IPYY) (Scheme 14) on the photopolymerization of vinyl monomers. Only acrylic monomers such as MMA and methyl acrylate (MA) were photoinitiated by IPYY, while vinylacetate (VA), acrylonitrile (AN), and styrene were unaffected by the initiator used. A free radical mechanism was confirmed by a kinetic study. The complex of IPYY and MMA was defined as an exciplex that served as a precursor of the initiating radical. This ylide is unique in being stabilized by the participation of a... [Pg.375]


See other pages where Monomer methyl acrylate is mentioned: [Pg.285]    [Pg.216]    [Pg.178]    [Pg.320]    [Pg.98]    [Pg.285]    [Pg.216]    [Pg.178]    [Pg.320]    [Pg.98]    [Pg.354]    [Pg.436]    [Pg.164]    [Pg.276]    [Pg.277]    [Pg.277]    [Pg.279]    [Pg.3]    [Pg.488]    [Pg.540]    [Pg.396]    [Pg.331]   
See also in sourсe #XX -- [ Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.129 , Pg.130 , Pg.131 , Pg.132 , Pg.133 ]




SEARCH



Acrylates methyl acrylate

Acrylic monomer

Methyl monomer

© 2024 chempedia.info