Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mono titanium

Titanium Phosphorous Containing Chelates. The reaction of a mixture of mono (alkyl) diacid orthophosphate, di(alkyl)monoacid orthophosphate, and TiCl in a high boiling hydrocarbon solvent such as heptane, with nitrogen-assisted evolution of Hberated HCl, gives a mixture of titanium tetra(mixed alkylphosphate)esters, (H0)(R0)0=P0) Ti(0P=0(0R)2)4 in heptane solution (100). A similar mixture can be prepared by the addition of two moles of P2O5 to mole of TiCl in the presence of six moles of alcohol ... [Pg.147]

The i5p-titanium(IV) atom is hard, ie, not very polarizable, and can be expected to form its most stable complexes with hard ligands, eg, fluoride, chloride, oxygen, and nitrogen. Soft or relatively polarizable ligands containing second- and third-row elements or multiple bonds should give less stable complexes. The stabihty depends on the coordination number of titanium, on whether the ligand is mono- or polydentate, and on the mechanism of the reaction used to measure stabihty. [Pg.150]

Complexes of titanium, such as 2,6-(RNCH2)2NC H2TiCl2, prepared by reaction of TiCl with 2,6((CH2)3Si)RNCH2)2NC H2, can react with various Grignard reagents to prepare conformationady rigid diamide mono- and dialkyl titanate complexes (218,219). [Pg.156]

Mixtures of a titanium complex of saturated diols, such as TYZOR OGT, and a titanium acylate, such as bis- -butyl-bis-caproic acid titanate, do not have a yellowing or discoloring effect on white inks used to print polyolefin surfaces (506). The complexes formed by the reaction of one or two moles of diethyl citrate with TYZOR TPT have an insignificant color on their own and do not generate color with phenol-based antioxidants (507). The complexes formed by the addition of a mixture of mono- and dialkyl phosphate esters to TYZOR TBT are also low color-generating, adhesion-promoting additives for use in printing polyolefin films (508). [Pg.163]

Spherical, Fine-Particle Titanium Dioxide. Spherical, fine-particle titanium dioxide that has no agglomeration and of mono-dispersion can be manufactured by carrying out a gas-phase reaction between a tetraalkyl titanate vapor and methanol vapor in a carrier gas to form an initial fine particle, which can then be hydrolyzed with water or steam (572). [Pg.164]

Samples were tested on in a melt of salts (75% Na SO, 25% NaCl) at 950°C in an air atmosphere for 24 hours. Micro X-rays spectrum by the analysis found that the chemical composition of carbides of an alloy of the ZMI-3C and test alloys differs noticeably. In the monocarbide of phase composition of an alloy of the ZMI-3C there increased concentration of titanium and tungsten is observed in comparison with test alloys containing chemical composition tantalum. The concentration of more than 2% of tantalum in test alloys has allowed mostly to deduce tungsten from a mono carbide phase (MC) into solid solution. Thus resistance of test alloys LCD has been increased essentially, as carbide phase is mostly sensitive aggressive environments influence. The critical value of total molybdenum and tungsten concentration in MC should not exceed 15%. [Pg.437]

Several mono(amidinato) complexes of titanium containing the N,N -bis(trimethylsilyl)benzamidinato ligand have been prepared either by metathe-tical routes or ligand substitution reactions as outlined in Schemes 80 and 81. Trialkoxides are accessible as well as the dimeric trichloride, which can be... [Pg.246]

Titanium imido complexes supported by amidinate ligands form an interesting and well-investigated class of early transition metal amidinato complexes. Metathetical reactions between the readily accessible titanium imide precursors Ti( = NR)Cl2(py)3 with lithium amidinates according to Scheme 84 afforded either terminal or bridging imido complexes depending on the steiic bulk of the amidinate anion. In solution, the mononuclear bis(pyridine) adducts exist in temperature-dependent, dynamic equilibrium with their mono(pyiidine) homologs and free pyridine. [Pg.249]

The guanidinate-supported titanium imido complex [Me2NC(NPr02l2Ti = NAr (Ar = 2,6-Me2C6H3) (cf. Section IILB.2) was reported to be an effective catalyst for the hydroamination of alkynes. The catalytic activity of bulky amidinato bis(alkyl) complexes of scandium and yttrium (cf. Section III.B.l) in the intramolecular hydroamination/cyclization of 2,2-dimethyl-4-pentenylamine has been investigated and compared to the activity of the corresponding cationic mono(alkyl) derivatives. [Pg.336]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

The titanium reagent also dimethylates aromatic aldehydes." Triethylaluminum reacts with aldehydes, however, to give the mono-ethyl alcohol, and in the presence of a chiral additive the reaction proceeds with good asymmetric induction." A complex of Me3Ti-MeLi has been shown to be selective for 1,2 addition with conjugated ketones, in the presence of nonconjugated ketones." ... [Pg.1210]

Nanoparticles of the semicondnctor titanium dioxide have also been spread as mono-layers [164]. Nanoparticles of TiOi were formed by the arrested hydrolysis of titanium iso-propoxide. A very small amount of water was mixed with a chloroform/isopropanol solution of titanium isopropoxide with the surfactant hexadecyltrimethylammonium bromide (CTAB) and a catalyst. The particles produced were 1.8-2.2 nm in diameter. The stabilized particles were spread as monolayers. Successive cycles of II-A isotherms exhibited smaller areas for the initial pressnre rise, attributed to dissolution of excess surfactant into the subphase. And BAM observation showed the solid state of the films at 50 mN m was featureless and bright collapse then appeared as a series of stripes across the image. The area per particle determined from the isotherms decreased when sols were subjected to a heat treatment prior to spreading. This effect was believed to arise from a modification to the particle surface that made surfactant adsorption less favorable. [Pg.89]

Pigments and dyes Titanium dioxide, mono and disazo compounds phthalocyanines, anthraquinones... [Pg.563]

In contrast to the vast number of mono- and multinuclear binary carbonyl complexes of the transition metals, no isolable binary carbonyls of titanium, zirconium, or hafnium have been reported. [Pg.319]

The IR and XH-NMR spectral data for the various titanocene mono-carbonyl-phosphine complexes are compiled in Table III. Examination of the carbonyl stretching frequencies (Table III) nicely demonstrates the enhanced 7r-backbonding of the titanium center to CO as the -accepting ability of the phosphine ligand decreases. [Pg.358]

Among titanium-based precursors, monocyclopentadienyl compounds of the type CpTiCl3 or Cp TiCl3 activated by MAO or B(C6F5)3 showed the best performance, although several substituted mono-Cp or indenyl derivative and Cp-free compounds as Ti(CH2Ph)4 and Ti(OR)4 (R = alkyl, aryl) are quite active as well. In short, practically any soluble titanium compound can be used as precatalyst.154-158... [Pg.54]

In marked contrast to the above results, double nitrile insertion into both the titanium-alkyl and titanium—vinyl bonds occurs to form the diazatitanacycles 74. Treatment of these titanacycles with dry hydrogen chloride affords the tetrasubstituted pyridine derivatives 75 (Scheme 14.32) [74], On the other hand, 2,3-diphenyltitanacyclobutene reacts with various nitriles to afford the products of mono-insertion, which afford the corresponding unsaturated ketones upon hydrolysis [73,74]. [Pg.494]

SiO)3Ti-H and (=SiO)3Ti species react very easily with alcohols to give titanium tris-siloxy mono-alkoxy. Step by step, following the methods described in Scheme 2.10, it is thus possible to obtain well-defined mono-, bi- or tripodal complexes that have been characterized by chemical analysis and by chemical and spectroscopic methods such as IR and solid-state NMR ( H and C). [Pg.33]

Tetraneopentyl zirconium reacts in the same way as tetraneopentyl titanium to give, on a silica (soo), a tris(neopentyl) monografted species [32]. Treatment under H2 of this surface species yields silica-supported zirconium hydrides [33], which have been characterized as a mixture of mono- (65-70%) and bis- (35-30%) hydrides based on double quanta NMR experiments (Scheme 2.11) [34]. Interestingly, the double quantum experiment allows us to prove not only the presence of the two hydrides and the monohydride of zirconium by the presence or the absence of the double quanta correlation but also to detect the through space magnetic interaction between the zirconium monohydride and the silicon di-hydride, proving thus the spatial arrangement on the surface. This confirms the mechanism by which these hydrides have been formed on the surface. [Pg.35]

Mono(siloxy) metalhydrocarbyl species can be converted into bis- or tris(siloxy) metal hydrides by reaction with hydrogen, as shown for zirconium and tantalum. Such species are less susceptible to leaching and this route can be extended to titanium and hafnium surface species that are potential precatalysts for hydrogenolysis of C-C bonds, alkane metathesis and epoxidation reactions. [Pg.449]


See other pages where Mono titanium is mentioned: [Pg.115]    [Pg.371]    [Pg.160]    [Pg.604]    [Pg.244]    [Pg.331]    [Pg.217]    [Pg.80]    [Pg.56]    [Pg.270]    [Pg.162]    [Pg.588]    [Pg.725]    [Pg.343]    [Pg.451]    [Pg.460]    [Pg.460]    [Pg.462]    [Pg.528]    [Pg.64]    [Pg.164]    [Pg.575]    [Pg.132]    [Pg.133]    [Pg.133]    [Pg.83]    [Pg.440]    [Pg.328]    [Pg.423]   


SEARCH



Mono complexes titanium

Mono-Cp titanium complexes

Sulfonimidoyl-Substituted Mono (allyl) titanium Complexes

Titanium complexes with mono

© 2024 chempedia.info