Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monitoring optical absorption

ESR experiments were used to measure the kinetics of several types of reactions, those that can be monitored only by ESR, such as proton exchange or electron exchange reactions of radicals, and some that can be measured by other techniques as well, e.g. decay kinetics. Although most decay kinetics of phenoxyl radicals were followed by pulse radiolysis or flash photolysis by monitoring optical absorption, kinetics for some long-lived radicals were frequently monitored by ESR. For example, the second-order decay rates of 4-alkyl-2,6-di-f-butylphenoxyl radicals were measured to be 2200, 500 and 2 s ... [Pg.1125]

The detector D monitors the absorption of the probe beam as a function of the delay between the pulses given by xHc, where c is the speed of light and v is the difference between the optical path travelled by the probe and by the pump pulse. Adapted from [110],... [Pg.2127]

The changes in the optical absorption spectra of conducting polymers can be monitored using optoelectrochemical techniques. The optical spectmm of a thin polymer film, mounted on a transparent electrode, such as indium tin oxide (ITO) coated glass, is recorded. The cell is fitted with a counter and reference electrode so that the potential at the polymer-coated electrode can be controlled electrochemically. The absorption spectmm is recorded as a function of electrode potential, and the evolution of the polymer s band stmcture can be observed as it changes from insulating to conducting (11). [Pg.41]

Applications The differential optical absorption spectrometer has been used to monitor concentrations of gases or intermediate compounds such as SO, NO, O5, HCHO, HNO, CS, NO, and OH in the atmosphere.In atmospheric measurements with open paths of 100 to 1000 m, a detection limit of about 1 ppb can be achieved. In the emission measurements, the path length across the duct or the plume can range in meters. [Pg.1303]

Edner, Hans, Anders Sunesson, Sune Svanberg, Leif Llneus, and. Svante Wallin. Differential Optical Absorption Spectroscopy System Used for Atmospheric Mercury Monitoring. Applied Optics 25 (1986), pp. 403-409. [Pg.1315]

Time-resolved optical absorption spectroscopy experiments have shown that arenesul-fonyl radicals decay with clean second-order kinetics14 the values of 2 k,/a h where s2 is the extinction coefficient at the monitoring wavelength, increased linearly with decreasing viscosity of the solvent, further indicating that reaction 16 is clearly a diffusion-controlled process. [Pg.1100]

Method Abs, chemical reduction, monitored by absorption spectroscopy CD, chemical reduction, monitored by CD spectroscopy CD/OTTLE, electrochemical reduction using an optically transparent thin layer (OTTLE) cell, monitored by CD spectroscopy CV, cyclic voltammetry EPR, chemical reduction, monitored by EPR. [Pg.137]

In order to follow progress of elimination, reactions were also performed on thin films in a special sealed glass cell which permitted in situ monitoring of the electronic or infrared spectra at room temperature (23°C). Typically, the infrared or electronic spectrum of the pristine precursor polymer film was obtained and then bromide vapor was introduced into the reaction vessel. In situ FTIR spectra in the 250-4000 cm-- - region were recorded every 90 sec with a Digilab Model FTS-14 spectrometer and optical absorption spectra in the 185-3200 nm (0.39-6.70 eV) range were recorded every 15 min with a Perkin-Elmer Model Lambda 9 UV-vis-NIR spectrophotometer. The reactions were continued until no visible changes were detected in the spectra. [Pg.447]

The introduction of 2-[4-(dimethylamino)phenylazo]benzoic acid into a silica sol allows the preparation of pH-sensitive doped coatings upon glass substrates. The behavior of this system was evaluated as the function of pH changes in liquid and gas media68. Optical absorption and sensitivity against pH were monitored by Vis spectroscopy. Chemical and mechanical stability tests carried out with coatings demonstrated that they were resistant enough to be use in sensor devices for pH measurements in laboratories. [Pg.368]

Optical methods monitor the optical absorption/emission/scattering of a gas species at defined optical wavelengths. The distribution of this optical absorption/emission with wavelength provides an optical fingerprint for any gas species present, and the magnitude typically shows the concentration. [Pg.459]

Inaba H., Kobayasi T., Hirama M., Hamza M., Optical-fiber network system for air-pollution monitoring over a wide area by optical absorption method, Electronics Letters 1979 15 (23) 749-751. [Pg.476]

Optical Coherence Tomography and Optical Coherence Microscopy to Monitor Water Absorption... [Pg.92]

The above theory is usually called the generalized linear response theory because the linear optical absorption initiates from the nonstationary states prepared by the pumping process [85-87]. This method is valid when pumping pulse and probing pulse do not overlap. When they overlap, third-order or X 3 (co) should be used. In other words, Eq. (6.4) should be solved perturbatively to the third-order approximation. From Eqs. (6.19)-(6.22) we can see that in the time-resolved spectra described by x"( ), the dynamics information of the system is contained in p(Af), which can be obtained by solving the reduced Liouville equations. Application of Eq. (6.19) to stimulated emission monitoring vibrational relaxation is given in Appendix III. [Pg.64]

UV/vis optical absorption spectroscopy The first and important characterization is optical absorption. The synthesis of clusters can be monitored by the appearance of the optical absorption features. Each cluster has a characteristic absorption spectrum and can be distinguished from each other by their characteristic absorption features. [Pg.339]

The evolution of the band structure - and thus of the doping process -may be conveniently monitored by detecting in situ the optical absorption during the electrochemical process, by placing the cell directly into the spectrophotometer (Danieli et al, 1985). [Pg.246]

Insulin release from the insuhn-loaded matrix was measured in response to alternating changes of glucose concentration when 150 mg of an insulin-loaded matrix was introduced to 100 mL of PBS at 37°C. The amount of insulin released was measured by taking 1 mL of the release medium at a specific time and immersing the matrix in a fresh medium. Insulin was determined by reverse-phase HPLC, using a Resolvex Cis (Fisher Scientific) and 0.01 N HCl/acetonitrile (80/20-50/50, v/v%) mobile phase over 30 min at a flow rate of 1 mL/min. The eluate was monitored by optical absorption at 210 nm. [Pg.54]

In the typical setup, excitation light is provided by a pulsed (e.g., nanosecond) laser (emitting in the visible range, e.g., at 532 nm, if Mb is investigated), while the probe is delivered by a continuous-wave (cw) laser. The two beams are spatially overlapped in the sample, and the temporal changes in the optical properties (such as optical absorption or frequency shift) that follow the passage of the pump pulse are registered by a detector with short response time (relative to time scale of the processes monitored), such as a fast photodiode. [Pg.10]

Plane, J. M. C., and N. Smith, Atmospheric Monitoring by Differential Optical Absorption Spectroscopy, in Spectroscopy in Envi-... [Pg.650]

Platt, U Differential Optical Absorption Spectroscopy (DOAS), in Air Monitoring by Spectroscopic Techniques (M. W. Sigrist, Ed.), Chemical Analysis Series, Vol. 127, pp. 27-84, Wiley, New York, 1994. [Pg.650]

The LFP of diphenyldiazomethane ( DDM ) in a variety of solvents produces triplet diphenylcarbene ( DPC, 14a), whose transient absorption is readily monitored. The optical absorption spectrum of DPC is quenched by methanol and yields the product of O—H insertion, suggesting that DPC is quenched by the O—H bond of methanol. The quenching rate constant (fex) is determined to be 6.8 X 10 M s in benzene. ... [Pg.395]


See other pages where Monitoring optical absorption is mentioned: [Pg.647]    [Pg.647]    [Pg.512]    [Pg.138]    [Pg.260]    [Pg.670]    [Pg.489]    [Pg.9]    [Pg.229]    [Pg.3]    [Pg.245]    [Pg.13]    [Pg.509]    [Pg.170]    [Pg.62]    [Pg.180]    [Pg.237]    [Pg.328]    [Pg.2]    [Pg.393]    [Pg.686]    [Pg.160]    [Pg.17]    [Pg.120]    [Pg.30]    [Pg.221]    [Pg.17]    [Pg.14]    [Pg.162]   
See also in sourсe #XX -- [ Pg.274 ]




SEARCH



Absorption monitors

Optical absorption

© 2024 chempedia.info