Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular-sieving carbons, example

In principle, molecular sieve carbons (MSC) can be achieved by the pyrolysis of thermosetting polymers such as polyvinylidene chloride, polyfurfuryl alcohol, cellulose, cellulose triacetate, polyacrylonitrile and phenol formaldehyde (Koresh 1980). An example is given by Trimm and Cooper (1970,1973) for the preparation of MSC (mixed with metallic compounds) for catalyst systems. A mixture of furfuryl alcohol, platinum oxide and formaldehyde was heated to 40°C and additional formaldehyde was added to ensure the... [Pg.49]

The appearance of the initial section of a Type V isotherm is very similar to that of a Type III isotherm for a similar gas-solid system (e.g. water/carbon). In this case, however, the sharp increase in adsorption at higher p/pa is dependent on the pore size. For example, the ulbamicropores in a molecular sieve carbon are filled with water at a much lower p(p° than are the wider pores in a supermicroporous carbon. [Pg.442]

The main difference between the synthesis of MCM-41 mesoporous material and traditional synthesis of zeolite or silica molecular sieve is the use of different templates. An individual organic molecule or metal cation is used for the traditional synthesis of silica microporous molecular sieve. For example, the typical template for ZSM-5 synthesis is tetrapropylammonium ion the crystal is formed through the condensation of silicate species around the template molecule, while for the formation of MCM-41, the typical template is the assembly of large molecules containing one hydrophobic chain with more than 10 carbons. [Pg.479]

The nanoporous carbon membrane consists of a thin layer (<10pm) of a nanoporous (3-7 A) carbon film supported on a meso-macroporous solid such as alumina or a carbonized polymeric structure. They are produced by judicious pyrolysis of polymeric films. Two types of membranes can be produced. A molecular sieve carbon (MSC) membrane contains pores (3-5 A diameters), which permits the smaller molecules of a gas mixture to enter the pores at the high-pressure side. These molecules adsorb on the pore walls and then they diffuse to the low-pressure side of the membrane where they desorb to the gas phase. Thus, separation is primarily based on differences in the size of the feed gas molecules. Table 7 gives a few examples of separation performance of MSC membranes. ° Component 1 is the smaller component of the feed gas mixture. [Pg.37]

Highly porous carbons can be produced from a variety of natural and synthetic precursors [11, 12]. Relatively inexpensive activated carbons are useful adsorbents, but generally their surface and pore structures are exceedingly complex [11, 13]. However, it is now possible to prepare a number of more uniform carbonaceous adsorbents. For example, molecular sieve carbons (MSCs) are available with narrow distributions of ultramicropores, which exhibit well-defined molecular selectivity [11], and carbon nanotubes, aerogels, and membranes are also amongst the most interesting advanced materials for research and development [12, 14]. [Pg.7]

In addition, the effect of pre-treatments and post-treatments dnring the membrane fabrication process shoitld also be examined. As an example, post-oxidation treatments can be very useful to tailor the properties of a molecular sieving carbon membrane in order to make an adsorption-selective carbon membrane, which is suitable for the separation of hydrocarbon mixtures based on adsorption differences. In fact. [Pg.312]

Fig. 9. Uptake curves for N2 in two samples of carbon molecular sieve showing conformity with diffusion model (eq. 24) for sample 1 (A), and with surface resistance model (eq. 26) for example 2 (0)j LDF = linear driving force. Data from ref. 18. Fig. 9. Uptake curves for N2 in two samples of carbon molecular sieve showing conformity with diffusion model (eq. 24) for sample 1 (A), and with surface resistance model (eq. 26) for example 2 (0)j LDF = linear driving force. Data from ref. 18.
OtherApphca.tlons. Many appHcations of adsorption involving radioactive compounds simply parallel similar appHcations involving the same compounds in nonradio active forms, eg, radioactive carbon-14, or deuterium- or tritium-containing versions of CO2, H2O, hydrocarbons. For example, molecular sieve 2eohtes are commonly employed for these separations, just as for the corresponding nonradio active uses. [Pg.285]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

The classifications in Table 16-3 are intended only as a rough guide. For example, a carbon molecular sieve is truly amorphous but has been manufactured to have certain structural, rate-selective properties. Similarly, the extent of hydrophobicity of an activated carbon will depend on its ash content and its level of surface oxidation. [Pg.1500]

As an example of the selective removal of products, Foley et al. [36] anticipated a selective formation of dimethylamine over a catalyst coated with a carbon molecular sieve layer. Nishiyama et al. [37] demonstrated the concept of the selective removal of products. A silica-alumina catalyst coated with a silicalite membrane was used for disproportionation and alkylation of toluene to produce p-xylene. The product fraction of p-xylene in xylene isomers (para-selectivity) for the silicalite-coated catalyst largely exceeded the equilibrium value of about 22%. [Pg.219]

Zeolites. In heterogeneous catalysis porosity is nearly always of essential importance. In most cases porous materials are synthesized using the above de.scribed sol-gel techniques resulting in so-called amorphous catalysts. Porosity is introduced in the agglomeration process in which the sol is transformed into a gel. From X-ray Diffraction patterns it is clear that the material shows only weak broad lines, characteristic of non-crystalline materials. Silica and alumina are typical examples. Zeolites are an exception they are crystalline materials but nevertheless exhibit high (micro) porosity. Zeolites belong to the class of molecular sieves, which are porous solids with pores of molecular dimensions, i.e., typically the pore diameter ranges from 0.3 to 10 nm. Examples of molecular sieves are carbons, oxides and zeolites. [Pg.76]

With appropriate membrane pore size and a narrow distribution, membrane selectivity for smaller gas molecules can be high but the overall permeability is generally low due to a high flow resistance in fine pores. Several studies are being conducted to develop molecular sieve-type membranes using different inorganic materials, for example, those based on carbon (Liu, 2007), silica (Pex and van Delft, 2005), and zeolites (Lin, 2007). [Pg.309]

Thus, there are two limitations of the pycnometric technique mentioned possible adsorption of guest molecules and a molecular sieving effect. It is noteworthy that some PSs, e.g., with a core-shell structure, can include some void volume that can be inaccessible to the guest molecules. In this case, the measured excluded volume will be the sum of the true volume of the solid phase and the volume of inaccessible pores. One should not absolutely equalize the true density and the density measured by a pycnometric technique (the pycnometric density) because of the three factors mentioned earlier. Conventionally, presenting the results of measurements one should define the conditions of a pycnometric experiment (at least the type of guest and temperature). For example, the definition p shows that the density was measured at 298 K using helium as a probe gas. Unfortunately, use of He as a pycnometric fluid is not a panacea since adsorption of He cannot be absolutely excluded by some PSs (e.g., carbons) even at 293 K (see van der Plas in Ref. [2]). Nevertheless, in most practically important cases the values of the true and pycnometric densities are very close [2,7],... [Pg.284]

Molecular sieves are porous solids with pores of the size of molecular dimensions, 0.3-2.0nm in diameter. Examples include zeoUtes, carbons, glasses and oxides. Some are crystalline with a uniform pore size deUneated by their crystal structure, for example, zeolites. Most molecular sieves in practice today are zeolites. [Pg.1]

Up to now, a variety of non-zeolite/polymer mixed-matrix membranes have been developed comprising either nonporous or porous non-zeolitic materials as the dispersed phase in the continuous polymer phase. For example, non-porous and porous silica nanoparticles, alumina, activated carbon, poly(ethylene glycol) impregnated activated carbon, carbon molecular sieves, Ti02 nanoparticles, layered materials, metal-organic frameworks and mesoporous molecular sieves have been studied as the dispersed non-zeolitic materials in the mixed-matrix membranes in the literature [23-35]. This chapter does not focus on these non-zeoUte/polymer mixed-matrix membranes. Instead we describe recent progress in molecular sieve/ polymer mixed-matrix membranes, as much of the research conducted to date on mixed-matrix membranes has focused on the combination of a dispersed zeolite phase with an easily processed continuous polymer matrix. The molecular sieve/ polymer mixed-matrix membranes covered in this chapter include zeolite/polymer and non-zeolitic molecular sieve/polymer mixed-matrix membranes, such as alu-minophosphate molecular sieve (AlPO)/polymer and silicoaluminophosphate molecular sieve (SAPO)/polymer mixed-matrix membranes. [Pg.333]

The primary requirement for an economic adsorption separation process is an adsorbent with sufficient selectivity, capacity, and life. Adsorption selectivity may depend either on a difference in adsorption equilibrium or, less commonly, on a difference in kinetics. Kinetic selectivity is generally possible only with microporous adsorbents such as zeolites or carbon molecular sieves. One can consider processes such as the separation of linear from branched hydrocarbons on a 5A zeolite sieve to be an extreme example of a kinetic separation. The critical molecular diameter of a branched or cyclic hydrocarbon is too large to allow penetration of the 5A zeolite crystal, whereas the linear species are just small enough to enter. The ratio of intracrystalline diffusivities is therefore effectively infinite, and a very clean separation is possible. [Pg.31]


See other pages where Molecular-sieving carbons, example is mentioned: [Pg.73]    [Pg.246]    [Pg.201]    [Pg.218]    [Pg.73]    [Pg.208]    [Pg.271]    [Pg.175]    [Pg.519]    [Pg.187]    [Pg.251]    [Pg.535]    [Pg.160]    [Pg.28]    [Pg.153]    [Pg.289]    [Pg.290]    [Pg.107]    [Pg.95]    [Pg.66]    [Pg.94]    [Pg.322]    [Pg.160]    [Pg.535]    [Pg.548]    [Pg.720]    [Pg.484]    [Pg.160]    [Pg.273]    [Pg.237]    [Pg.147]    [Pg.151]   


SEARCH



Carbon molecular sieves

Molecular sieves

Molecular sieving

© 2024 chempedia.info