Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular sieves physical properties

Physical Properties. Physical properties of importance include particle size, density, volume fraction of intraparticle and extraparticle voids when packed into adsorbent beds, strength, attrition resistance, and dustiness. These properties can be varied intentionally to tailor adsorbents to specific apphcations (See Adsorption liquid separation Aluminum compounds, aluminum oxide (alumna) Carbon, activated carbon Ion exchange Molecular sieves and Silicon compounds, synthetic inorganic silicates). [Pg.278]

The special case involving the removal of a low (2—3 mol %) mole fraction impurity at high (>99 mol%) recovery is called purification separation. Purification separation typically results in one product of very high purity. It may or may not be desirable to recover the impurity in the other product. The separation methods appHcable to purification separation include equiUbrium adsorption, molecular sieve adsorption, chemical absorption, and catalytic conversion. Physical absorption is not included in this Hst as this method typically caimot achieve extremely high purities. Table 8 presents a Hst of the gas—vapor separation methods with their corresponding characteristic properties. The considerations for gas—vapor methods are as follows (26—44). [Pg.458]

Physica.1 Properties. Carbonyl sulfide [463-58-1] (carbon oxysulfide), COS, is a colorless gas that is odorless when pure however, it has been described as having a foul odor. Physical constants and thermodynamic properties are Hsted ia Table 1 (17,18). The vapor pressure has been fitted to an equation, and a detailed study has been made of the phase equiUbria of the carbonyl sulfide—propane system, which is important ia the purification of propane fuel (19,20). Carbonyl sulfide can be adsorbed on molecular sieves (qv) as a means for removal from propane (21). This approach has been compared to the use of various solvents and reagents (22). [Pg.129]

If one examines the evolution of new zeolite structures over the past decade the most interesting discoveries have been made with high silica compositions. Many of these phases can be prepared in essentially all silica forms. Purists would prefer to classify such molecular sieves as organosilicates or porosils (1), in part because the physical properties differ from more classical low Si/Al ratio zeolites. In particular, the high silica zeolites tend to be more thermally stable and chemically robust. Additionally, the higher the Si/Al ratio the more hydrophobic the zeolite. These features are desirable for catalysts that may be used in catalytic processes such as cracking (3). [Pg.220]

Ethylbenzene plants, 23 330-331 Ethylbenzene-styrene complex, 23 328 Ethylbenzene synthesis molecular sieves in, 16 845 zeolite-based alkylation in, 23 331-333 Ethyl benzoate, 3 635 Ethyl P-D-glucopyranoside, 4 701 7-Ethylbicyclooxazolidine, antimicrobial used in cosmetics, 7 831t Ethyl bromide, physical properties of, 4 351t... [Pg.332]

The chemical composihons of the zeolites such as Si/Al ratio and the type of cation can significantly affect the performance of the zeolite/polymer mixed-matrix membranes. MiUer and coworkers discovered that low silica-to-alumina molar ratio non-zeolitic smaU-pore molecular sieves could be properly dispersed within a continuous polymer phase to form a mixed-matrix membrane without defects. The resulting mixed-matrix membranes exhibited more than 10% increase in selectivity relative to the corresponding pure polymer membranes for CO2/CH4, O2/N2 and CO2/N2 separations [48]. Recently, Li and coworkers proposed a new ion exchange treatment approach to change the physical and chemical adsorption properties of the penetrants in the zeolites that are used as the dispersed phase in the mixed-matrix membranes [56]. It was demonstrated that mixed-matrix membranes prepared from the AgA or CuA zeolite and polyethersulfone showed increased CO2/CH4 selectivity compared to the neat polyethersulfone membrane. They proposed that the selectivity enhancement is due to the reversible reaction between CO2 and the noble metal ions in zeolite A and the formation of a 7i-bonded complex. [Pg.338]

The physical-chemical properties of a synthetic gallophosphate molecular sieve, the 30-A supercage cloverite , have been assessed [18]. Instead of attempting to list the burgeoning number of fullerene publications, attention is drawn to the formation and characterization of fullerene-like nanocrystals of tungsten disulfide [19,20]. Preparation, characterization and utilization of carbon nanotubes have been the subject of a number of reports from several laboratories [21-27]. [Pg.210]

Physical Properties. The size, molecular weight, and vapor pressure determine the pore size necessary to trap and release a substance efficiently. Large molecules such as pesticides cannot be collected and recovered on molecular sieves nor will small molecules like gaseous hydrocarbons be retained well by porous polymers. [Pg.181]

An analytical method for applying Polanyi s theory at temperatures near the critical temperature of the adsorbate is described. The procedure involves the Cohen-Kisarov equation for the characteristic curve as well as extrapolated values from the physical properties of the liquid. This method was adequate for adsorption on various molecular sieves. The range of temperature, where this method is valid, is discussed. The Dubinin-Rad/ush-kevich equation was a limiting case of the Cohen-Kisarov s equation. From the value of the integral molar entropy of adsorption, the adsorbed phase appears to have less freedom than the compressed phase of same density. [Pg.382]

Niobium- and tantalum-containing mesoporous molecular sieves MCM-41 have been studied by X-ray powder diffraction, 29Si MAS NMR, electron spin resonance, nitrogen adsorption and UV-Vis spectroscopy and compared with niobium- and tantalum-containing silicalite-1. The results of the physical characterization indicate that it is possible to prepare niobium- and tantalum-containing MCM-41 and silicalite-1, where isolated Nb(V) or Ta(V) species are connected to framework defect sites via formation of Nb-O-Si and Ta-O-Si bonds. The results of this study allow the preparation of microporous and mesoporous molecular sieves with remarkable redox properties (as revealed by ESR), making them potential catalysts for oxidation reactions. [Pg.201]

The AlSBA mesoporous molecular sieves can be obtained easily by direct synthesis. These novel mesoporous materials retain the hexagonal order and physical properties of AlMCM-41... [Pg.217]

We demonstrate that the physical properties of Xe adsorbed in mesoporous MCM-41 molecular sieves can be deduced from the analysis of the variable temperature l2,Xe NMR chemical shift data. For example, the interactions between the adsorbed Xe and the wall of the adsorbent, 8S. Our results indicate that the interactions arise from Xe adsorbed in mesoporous MCM-41 deviates significantly from not only the bulk Xe, but also from Xe adsorbed on microporous adsorbents or polymer surfaces. At a given temperature T, the pore size dependence of 8S can be described by the empirical relation 8,(T, d) = A(T)/(d + B(T)). The two temperature-dependence parameters were expressed by polynomial functions whose temperature coefficients were also revealed explicitly to the second order. [Pg.523]

Finite concentration IGC is a useful tool to investigate surface and pore properties. A novel combination of finite concentration IGC and thermal desorption provides the possibility to separate micropore adsorption from surface and mesopore adsorption. This allows the calculation of BET values with physical relevance for highly microporous materials and the consideration of molecular sieve effects. [Pg.633]

In view of the large number of new zeolites recently synthesized, considerable effort has been expended in their physical characterization, in particular, via their sorption capacities for various organic substrates. The molecular exclusion properties of these zeolites have been used to estimate their pore-opening catacteristics and shape-selective properties (6). In contrast to the molecular sieving... [Pg.127]

Review of literature concerning the photochemistry of inorganic compounds shows us that a substantial progress was achieved during the past two decades in understanding the photophysical and photochemical properties of nanometer semiconductor particles [1-4] and structurally organized semiconductor materials, including the nanostructured semiconductor films, mesoporous molecular sieves [5 - 10] etc., and, also in the elaboration of physical and chemical techniques for their synthesis and examination of their photocatalytic activity in various chemical and electrochemical redox-processes. [Pg.587]


See other pages where Molecular sieves physical properties is mentioned: [Pg.21]    [Pg.2777]    [Pg.2186]    [Pg.215]    [Pg.289]    [Pg.182]    [Pg.48]    [Pg.563]    [Pg.8]    [Pg.16]    [Pg.27]    [Pg.28]    [Pg.152]    [Pg.238]    [Pg.626]    [Pg.242]    [Pg.146]    [Pg.192]    [Pg.355]    [Pg.254]    [Pg.7]    [Pg.209]    [Pg.495]    [Pg.79]    [Pg.79]    [Pg.84]    [Pg.399]    [Pg.64]    [Pg.66]    [Pg.93]    [Pg.1544]    [Pg.212]   
See also in sourсe #XX -- [ Pg.1035 , Pg.1043 ]




SEARCH



Molecular physics

Molecular sieves

Molecular sieving

Molecular sieving properties

© 2024 chempedia.info