Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model chemical, based

Smoluchowski theory [29, 30] and its modifications fonu the basis of most approaches used to interpret bimolecular rate constants obtained from chemical kinetics experiments in tenus of difhision effects [31]. The Smoluchowski model is based on Brownian motion theory underlying the phenomenological difhision equation in the absence of external forces. In the standard picture, one considers a dilute fluid solution of reactants A and B with [A] [B] and asks for the time evolution of [B] in the vicinity of A, i.e. of the density distribution p(r,t) = [B](rl)/[B] 2i ] r(t))l ] Q ([B] is assumed not to change appreciably during the reaction). The initial distribution and the outer and inner boundary conditions are chosen, respectively, as... [Pg.843]

The reliability of the in silico models will be improved and their scope for predictions will be broader as soon as more reliable experimental data are available. However, there is the paradox of predictivity versus diversity. The greater the chemical diversity in a data set, the more difficult is the establishment of a predictive structure-activity relationship. Otherwise, a model developed based on compounds representing only a small subspace of the chemical space has no predictivity for compounds beyond its boundaries. [Pg.616]

An alternative approach (78,79) is based on a set of possible reaction schemes that are used to generate potential new pathways. Under both approaches, the problem, in part, is how to evaluate the utiUty of a particular scheme. A computer-assisted approach to predicting potentially useful reactions has been developed (80). The union of existing capabiUties in modeling chemical stmctures with selecting reaction pathways has not yet taken place. [Pg.64]

Although the code is based on well-recognized models referenced in the literature, some of the underlying models are based on "older" theory which has since been improved. The code does not treat complex terrain or chemical reactivity other than ammonia and water. The chemical database in the code is a subset of the AIChE s DIPPR database. The user may not modify or supplement the database and a fee is charged for each chemical added to the standard database distributed with the code. The code costs 20,000 and requires a vendor supplied security key in the parallel port before use. [Pg.359]

Slesser and Highet (S15) have proposed a theoretical model for the case of a second-order chemical reaction taking place in a slurry reactor. This model is based on concepts very similar to those employed by Sherwood and Farkas, apart from the obvious complications resulting when one treats a second-order reaction. [Pg.86]

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent chemical or metabolite in an animal system. There are two types of pharmacokinetic models data-based and physiologically-based. A data-based model divides the animal system into a series of compartments which, in general, do not represent real, identifiable anatomic regions of the body whereby the physiologically-based model compartments represent real anatomic regions of the body. [Pg.244]

Purdy [91] used the technique to predict the carcinogenicity of organic chemicals in rodents, although his model was based on physicochemical and molecular orbital-based descriptors as well as on substructural features and it used only a relatively small number of compounds. His decision tree, which was manual rather than computer based, was trained on 306 compounds and tested on 301 different compounds it achieved 96% correct classification for the training set and 90% correct classification for the test set. [Pg.484]

Simple models are used to Identify the dominant fate or transport path of a material near the terrestrial-atmospheric Interface. The models are based on partitioning and fugacity concepts as well as first-order transformation kinetics and second-order transport kinetics. Along with a consideration of the chemical and biological transformations, this approach determines if the material is likely to volatilize rapidly, leach downward, or move up and down in the soil profile in response to precipitation and evapotranspiration. This determination can be useful for preliminary risk assessments or for choosing the appropriate more complete terrestrial and atmospheric models for a study of environmental fate. The models are illustrated using a set of pesticides with widely different behavior patterns. [Pg.197]

EXAMS - The Exposure Analyses Modeling System was developed at EPA by Burns, Cline, and Lassiter (2 ) The model is based on the conservation of the mass of a chemical within a dynamic aquatic environment. The following equation can be used to mathematically describe the model. [Pg.252]

Suspension Model of Interaction of Asphaltene and Oil This model is based upon the concept that asphaltenes exist as particles suspended in oil. Their suspension is assisted by resins (heavy and mostly aromatic molecules) adsorbed to the surface of asphaltenes and keeping them afloat because of the repulsive forces between resin molecules in the solution and the adsorbed resins on the asphaltene surface (see Figure 4). Stability of such a suspension is considered to be a function of the concentration of resins in solution, the fraction of asphaltene surface sites occupied by resin molecules, and the equilibrium conditions between the resins in solution and on the asphaltene surface. Utilization of this model requires the following (12) 1. Resin chemical potential calculation based on the statistical mechanical theory of polymer solutions. 2. Studies regarding resin adsorption on asphaltene particle surface and... [Pg.452]

Additionally, the integration of geographic information system (GIS) with analytical data is an effective procedure in addressing the problem of spatial and temporal variability of the different parameters involved in the environmental fate of chemicals. Based on accurate local estimations, GIS-based models would then also allow deriving realistic and representative spatially averaged regional PECs. Table 4 shows some studies that have used GIS-based methodologies to perform a site-specific risk assessment of PECs in different exposed ecosystems. [Pg.37]

FUN tool is a new integrated software based on a multimedia model, physiologically based pharmacokinetic (PBPK) models and associated databases. The tool is a dynamic integrated model and is capable of assessing the human exposure to chemical substances via multiple exposure pathways and the potential health risks (Fig. 9) [70]. 2-FUN tool has been developed in the framework of the European project called 2-FUN (Full-chain and UNcertainty Approaches for Assessing Health Risks in FUture ENvironmental Scenarios www.2-fun.org). [Pg.64]

The multimedia model present in the 2 FUN tool was developed based on an extensive comparison and evaluation of some of the previously discussed multimedia models, such as CalTOX, Simplebox, XtraFOOD, etc. The multimedia model comprises several environmental modules, i.e. air, fresh water, soil/ground water, several crops and animal (cow and milk). It is used to simulate chemical distribution in the environmental modules, taking into account the manifold links between them. The PBPK models were developed to simulate the body burden of toxic chemicals throughout the entire human lifespan, integrating the evolution of the physiology and anatomy from childhood to advanced age. That model is based on a detailed description of the body anatomy and includes a substantial number of tissue compartments to enable detailed analysis of toxicokinetics for diverse chemicals that induce multiple effects in different target tissues. The key input parameters used in both models were given in the form of probability density function (PDF) to allow for the exhaustive probabilistic analysis and sensitivity analysis in terms of simulation outcomes [71]. [Pg.64]

These models have been applied to different scenarios, mainly for two chemicals DeBDE (decabromodiphenyl ether) and Pb (lead). The input data to the models are based on the SFA investigations described above. [Pg.470]

Another model is based on the fact that the genetic code shows a number of regularities, some of which have already been mentioned above. It is suspected that codons beginning with C, A or U code for amino acids which were formed from a-ketoacids (or a-ketoglutarate, 1-KG), oxalacetate (OAA) and pyruvate. This new model, which is quite different from the previous models, assumes that a covalent complex formed from two nucleotides acted as a catalyst for chemical reactions such as the reductive amination of a-ketoacids, pyruvate and OAA. More recent analyses suggest that the rTCA cycle (see Sect. 7.3) could have served as a source of simple a-ketoacids, including glyoxylate, pyruvate, OAA and a-KG. a-Ketoacids could, however, also have been formed via a reductive acetyl-CoA reaction pathway. The bases of the two nucleotides specify the amino acid synthesized and were retained until the modern three-letter codes were established (Copley et al., 2005). [Pg.221]

Theoretical models include those based on classical (Newtonian) mechanical methods—force field methods known as molecular mechanical methods. These include MM2, MM3, Amber, Sybyl, UFF, and others described in the following paragraphs. These methods are based on Hook s law describing the parabolic potential for the stretching of a chemical bond, van der Waal s interactions, electrostatics, and other forces described more fully below. The combination assembled into the force field is parameterized based on fitting to experimental data. One can treat 1500-2500 atom systems by molecular mechanical methods. Only this method is treated in detail in this text. Other theoretical models are based on quantum mechanical methods. These include ... [Pg.129]

The CRE approach for modeling chemical reactors is based on mole and energy balances, chemical rate laws, and idealized flow models.2 The latter are usually constructed (Wen and Fan 1975) using some combination of plug-flow reactors (PFRs) and continuous-stirred-tank reactors (CSTRs). (We review both types of reactors below.) The CRE approach thus avoids solving a detailed flow model based on the momentum balance equation. However, this simplification comes at the cost of introducing unknown model parameters to describe the flow rates between various sub-regions inside the reactor. The choice of a particular model is far from unique,3 but can result in very different predictions for product yields with complex chemistry. [Pg.22]

PBPK modeling is the development of mathematical descriptions of the uptake and disposition of chemicals based on quantitative interrelationships among the critical biological determinants of these processes. These determinants include partition coefficients, rates of biochemical reactions and physiological characteristics of the animal species. The biological and mechanistic basis of the PBPK models... [Pg.731]


See other pages where Model chemical, based is mentioned: [Pg.3056]    [Pg.507]    [Pg.218]    [Pg.63]    [Pg.313]    [Pg.60]    [Pg.944]    [Pg.199]    [Pg.544]    [Pg.241]    [Pg.282]    [Pg.323]    [Pg.15]    [Pg.191]    [Pg.446]    [Pg.152]    [Pg.41]    [Pg.51]    [Pg.59]    [Pg.350]    [Pg.32]    [Pg.361]    [Pg.191]    [Pg.233]    [Pg.1]    [Pg.239]    [Pg.292]    [Pg.347]    [Pg.35]   
See also in sourсe #XX -- [ Pg.128 , Pg.129 , Pg.130 , Pg.131 , Pg.132 , Pg.133 , Pg.134 , Pg.135 ]




SEARCH



Chemical equilibrium models, computer-based

© 2024 chempedia.info